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ABSTRACT
Location information on the Web is a precious asset for a
multitude of applications and is becoming an increasingly
important dimension in Web search. Even though more and
more Web pages carry location information, they form only
a small share of all pages and are scattered over the Web. To
efficiently find and index location-related Web content, we
propose an efficient crawling strategy that retrieves precisely
those pages that are geospatially relevant while minimizing
the amount of the non-spatially-relevant pages within the
crawled pages. We propose to address this challenge by ex-
panding the technique of focused crawling to exploit location
references on Web pages to specifically retrieve geospatial
topics on the Web. In this paper, we describe the design and
development of a focused crawler with an adaptive geospa-
tial focus that efficiently retrieves and identifies location-
relevant documents on the Web. Drawing from geospatial
features of both Web pages and the link graph, a crawl strat-
egy based on Bayesian classifiers prioritizes promising links
and pages, leading to a faster coverage of the desired geospa-
tial topic as a means for fast creation of precise geospatial
Web indexes. We present evaluations of the system’s perfor-
mance and share our findings on the geospatial Web graph
and the distribution of location references on the Web.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.1 [Information Storage and
Retrieval]: Content Analysis and Indexing

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Adaptive Focused Crawling, location-aware Web search, ge-
ographic Web information retrieval, resource discovery
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1. INTRODUCTION
Location-aware Web search has gained a lot of attention in

both research and commercial search engines, corresponding
to the high interest of users in location-based information.
Several studies [34, 23] conclude that 5 to up to 20% of all
user queries express a geographic information need. Match-
ing this obvious need, an estimate of up to 20% of all Web
pages contain location references [21, 25].

A geospatial search engine therefore has to identify location-
relevant Web pages and extract their location semantics. For
a single page, geoparsing techniques can be used to assess
its location relevance. However, these pages are scattered
among a multitude of Web pages and cannot easily be re-
trieved for creation of a geospatial Web index.

To build an independent geospatial search engine without
having to rely on preprocessed data, several challenges have
to be addressed. One major challenge is to design a resource-
discovery process that can efficiently discover and retrieve
the relevant location-related Web content [9]. The method of
choice in the Web context is a crawler that traverses the Web
to index its contents. For a specialized location-based search
engine, a common broad crawling would be very resource-
intensive and of limited use since only a low percentage of
retrieved page is relevant to the geospatial domain and the
location of interest [2, 4]. Along with other characteristics
of geospatial information on the Web, this makes crawling
for a geospatial search engine a challenging task.

To address this challenge, we propose to adapt the focused
crawling strategies first described in [14] to utilize the Web’s
inherent link structure and to efficiently retrieve relevant
pages. We extend them with the necessary techniques to
recognize and exploit the specific geospatial characteristics
of the Web to develop a pinpointed focused crawler.

The application scenario for the tailored Web crawler so-
lution is a location-based information system for mobile or
pedestrian users. We aim to identify location references at
a fine granularity level of individual buildings or addresses
that is directly applicable to a mobile user or retrieval and
analysis tasks at this geographical granularity [2].

The remainder of this paper is structured as follows. In
Section 2 we discuss related work. Section 3 describes the
characteristics of geospatial information on the Web and the
implications for a crawler. Section 4 covers the design of our
adaptive geospatial focused crawler and its heuristics and
link prediction methods for adaptation of the crawl strat-
egy. The system is evaluated in Section 5 and following the
discussion, Section 6 concludes the paper.



2. RELATED WORK
The search for spatially relevant pages can be understood

as a topical fraction of the Web. Contrary to large-scale
search engines with the goal to index substantial parts of the
Web, topic-centered search engines are only indexing pages
relevant to their topic. These aim to maximize the ratio of
relevant pages retrieved by exploiting the link structure of
the Web combined with content classification.

An analysis of the Web hyperlink graph [11] gives an esti-
mate of the diameter of the Web, with the average link dis-
tance between arbitrary Web pages rather small compared to
the overall size of the Web. For the design of Web crawlers,
this means that due to the small diameter large parts of the
Web are accessible in a breadth-first crawl strategy. Con-
versely, with each additional link depth step, the amount of
reachable Web pages increases drastically so that it would
soon encompass major parts of the Web. This is a con-
vincing argument for a restriction of a crawl even at small
distances from its seeds and the careful selection of links a
crawler should follow. Geospatial pages are a common part
of this structure.

The seminal work on the topical crawling method are the
papers on focused crawling [14, 13] that describe the ap-
proach as an effective tool to quickly build up a topical in-
dex for specialized search. A later work [12] further explores
certain aspects of the approach, concentrating on enhanced
topic-based link prediction ranging from link anchor analysis
to machine learning approaches.

Using the definitions of [1], focused crawling assumes both
linkage locality and sibling locality of the Web’s linkage
structure. The former means that topical pages are more
likely to link to further topical pages than other, the latter
means that if some links on a page point to topical pages, the
other links are also more likely to link to topical pages. The
linkage or topical locality on the Web is confirmed by [16]
with several evaluations that show that Web pages on a topic
form densely connected clusters. These assumptions lead to
an idealized structure of the Web in which topical pages are
densely interlinked and have very short link distances be-
tween them, as they directly link towards each other. How-
ever, this idealized structure is usually not found on the
Web. Following the critique of [1] who first doubted the
strong linkage locality, we also find that for the geospatial
topic, the short distance topic cohesion cannot be assumed
[4]. However, a cohesion does exist that can be captured by
a broader definition of linkage locality as we will explain in
Section 3.

The exclusion of non-relevant pages and the inclusion of
relevant pages are main design goals which refine the com-
mon breadth-first approach into a best-first link selection
strategy. While breadth-first crawling is a preferred strat-
egy for general search engines [29], it is insufficient for the
focused crawling approach, which has to employ a focused
best-first strategy. The impact of different crawling and link
selection strategies is discussed in [15], who argue for the use
of relevance metrics in a crawl strategy. The topic of eval-
uation of topical crawlers is discussed in [26] and [36] and
various metrics are presented.

[6] have shown that crawling strategies using historical in-
formation yield good results when using the page importance
as a metric. We will later use a variation of the described
historical-parent strategy where newly discovered pages in-
herit a weight from their linking page. Furthermore, the

work explores a certain geographical aspect of the Web, as
it examines the strategies for the geographical concept of a
whole country.

Part of focused crawling is the prediction of a link’s rel-
evance to the topic. [17] use context graphs as representa-
tions of the inlinks of relevant pages. A trained classifier
determines whether a page could be the predecessor of rel-
evant pages. The inlinks are generated by querying search
engines, the classification of pages uses a naive Bayes tech-
nique. [19] discusses the use of machine learning for link
prediction in focused crawling and present initial evalua-
tions on a confined testset. [31] present an extensive study
and discussion of classification techniques for topical crawl-
ing. [27] compare various methods of focused crawling and
adaptation strategies and give an overview of the field. To
reach indirectly connected pages, [8] use an adaptive cutoff
in their crawl strategy. Concerning the applicability of fo-
cused crawling, a study on a medical topic [38] has proven
the efficiency of focused crawling to build a topic-centered
search service. [37] confirms their initial findings, but sug-
gests using a broader scope to retrieve more high-quality,
on-topic pages. Since location-relevant pages exhibit a struc-
ture different from the thematic topic regarding distribution
and link features, these approaches have to be refined to de-
sign a geospatial link prediction.

The geospatial information on the Web is mostly hidden
in unstructured Web pages. The identification of geographi-
cal entities and the use within a search engine is discussed in
[24], [25] and [5] for broad regions down to precise mapping
[28]. The use of geographic features to guide a Web crawler
is discussed in [18]. It describes a load-balancing distributed
system with one crawler per region of interest. [35] target
the use of neighborhoods instead of precise coordinates in
geo-IR and use commercial search engines for initial docu-
ment retrieval. The derivation of time and place semantics
from tagged media is discussed in [32]. The approach argued
by our group [2] chooses an address or a precise coordinate
as the desired granularity for location-based Web search.
We use a geoparser that can reliably retrieve location in-
formation at this granularity from unstructured Web pages
[3]. With a strong background in pedestrian applications,
we are interested in positions that can actually serve as a
navigation point rather than coarser allocations to regions
or districts. Additional features extracted from the pages
allow for multi-dimensional location-based search.

3. GEOSPATIALLY FOCUSED CRAWLING
Focused crawling is a preferred strategy to retrieve the-

matic topics. It exploits certain assumptions about the Web
structure and distribution of relevant pages. Since the dis-
tribution and linkage of geospatial pages differs from known
topics for focused crawling, we re-evaluate and refine these
assumptions towards the geospatial domain.

We illustrate the specific challenges in designing an effi-
cient spatially focused crawler with an exemplary part of
the Web graph as depicted in Figure 1. This part of the
graph is shown from the perspective of a Web crawler, as
a crawl tree. The crawl tree consists of crawled Web pages
and of only those links between them that were traversed
by the crawler. Relevant pages would be identified by our
geoparser and are drawn in a darker shade. Their respective
location is referenced and their coordinate shown on a map.
The full tree results from a broad crawl and contains a lot of



Figure 1: Exemplary selection of a crawl tree with
mapped geospatially relevant pages

non-relevant pages. Of these, the lighter shaded pages are
on a link path towards relevant pages and are thus neces-
sary to reach the relevant pages. The greyed out pages lie
on irrelevant link paths and could be fully removed without
any impact on the resulting set of relevant pages.

The goal of the proposed system is two-fold. First, a ma-
jority of location-relevant pages should be found on a crawl
while second, unpromising and irrelevant paths should be
avoided. An optimal crawl would only comprise the solidly
drawn pages and would exclude the greyed out ones, which
in this example reduces the effort by half. Furthermore, such
a system would help in assuring that relevant pages are en-
countered early on in a crawl [6]. To reach this goal, several
issues need to be considered:

Location classification. The geospatial information we
are seeking is hidden within the content of hyperlinked Web
pages which are scattered across the Web graph. The loca-
tion-relevant pages can only be reliably identified by exam-
ining their actual content. We use our geoparser to identify
address-level location information within unstructured Web
documents as described in [3] and receive a binary decision
on location relevance. If multiple addresses are present in a
page, they would map the page to different locations, but it
would still register as relevant. A more differentiated treat-
ment is future work.

Linkage locality. Within topic-focused resource discov-
ery, usually a thematic topic is defined and assessed with a
classifier. The topical focus depends on the thematic link-
age locality hypothesis which states that random pages on
the same topic are more likely to link to each other than
purely random pages. Thus, the focused crawling approach
depends heavily on the cohesion within the thematic topic.
The geospatial focus, on the other hand, centers on a feature
of the page’s content that is not directly thematic but in-
stead is defined by the presence of location information for a
region of interest. The cohesion is therefore less distinctive.
To our knowledge, no large-scale studies exist that would
consider linkage phenomena within the geospatial domain.
Several studies [21, 22, 25] state estimates on the number of
location-aware Web pages at about 10–20%, but have not
assessed link structure distribution.

Loose cohesion. To gain a better understanding, we ex-
amined the Web link structure in our initial studies [4] and

have shown that a strict cohesion of the geospatial topic is
only rarely present. In the example in Figure 1, only one
link on the right branch directly links relevant pages, while
other pages are less directly linked. This is in part due to the
sparse population of the graph with spatially relevant pages,
making a broad crawl unfeasible. However, the spatially
relevant pages are connected by intermediate, non-relevant
pages. These so-called bridge pages maintain the cohesion
of the geospatial topic. Many geospatial pages tend to be
linked with only a small number of bridge pages between
them. Therefore, a distance heuristic can be defined around
relevant pages that can include the following relevant pages.
One disadvantage, as can be seen in the example, is that it
is not easy to distinguish a bridge page from a non-relevant
page that does not lead to any more relevant pages, a so-
called tail. Therefore, such an approach would still include
most of the pages in the example. To reach the goal, we
have to identify which of the non-relevant pages are actu-
ally bridge pages and will later on lead to more spatially
relevant pages. We therefore aim at a probability classifica-
tion of links leading to relevant pages as a way for a broader
definition of linkage locality. The crawler has to balance
the immediate reward of quickly harvested relevant pages to
the delayed reward that comes from following bridge pages
[7, 33]. This delayed harvest depends on the classification
of bridges and tails to efficiently guide the crawler towards
the location-relevant pages sparsely distributed in the Web
graph.

Link prediction. For a location-relevance prediction,
we need to design a classifier to separate bridges from tails.
This is equivalent to a link prediction that assigns priorities
to outgoing links according to their judged relevance to the
geospatial topic. The link prediction needs to take the pres-
ence of bridge pages into account and should use a lookahead
over several links. This means that the relevance of a link
needs to be assessed in several successive link distances to
properly predict the link’s relevance. For this, we examine
relevant features from Web pages and their outgoing links
and use machine learning techniques to uncover similarities
and relations between those features that hint at geospatial
relevance.

4. APPROACH
Based on the requirements discussed before, we develop

several components for the adaptive geospatial focused crawler.
An adaptation of a breadth-first crawling strategy includes
bridge pages by defining link distances and a propagation
of relevance. This is input to a link prioritization according
to a relevance score. Finally, a link prediction assesses the
probability that a link leads to relevant pages, both for the
directly linked page and, since we have to allow for bridge
pages, for arbitrary link depths.

4.1 Location Relevance Propagation
We use information from the currently crawled pages as

feedback to dynamically adapt the crawl strategy. The most
obvious information gained from a crawl is the location rele-
vance of the downloaded pages. We exploit the weak geospa-
tial cohesion and assume the heuristics that the location as-
sessment of a page determines to some extent the assessment
prediction of its outgoing links.

We define a radius of bridge pages around each relevant
page to dynamically define the extension of further crawl-



ing. Thereby the geospatial relevance of a page is defined as
extendable to its outlinks with a falloff function. This mod-
els a relevance propagation tied to the bridge page distance.
Figure 2 shows a diagram of bridge pages on a crawl branch.
The upper part shows a crawl branch with two bridge pages
between relevant pages, the lower depicts the definition of
a distance around a relevant page. Note that this metric is
different from using seed distance. Using the distance of a
page to its seed, the crawl tree would grow steadily from its
root. On the other hand, by using information gained during
the crawl, the growth of the crawl tree can dynamically be
adapted to grow towards more promising pages and reduce
the download of non-relevant crawl branches.

Figure 2: Bridge pages and distances

4.2 Prioritization
The propagated relevance score is the basis for an adap-

tation of the breadth-first crawling strategy which we turn
into a best-first approach. The crawling strategy is basically
a selection strategy. Each URL is given an evaluation value
and based on the order of the values, the next URL to be
crawled is selected.

In our crawler, pages are given an exponentially decaying
score value that is derived from the bridge page distance.
They are then processed in score value order.

The prioritization of pages leads to a crawler that per-
forms well for both short and long-term operation. In the
early stages of a crawl where many relevant pages are close
to the seeds, these would be preferred. For longer crawl du-
rations, it would maintain the distance-based heuristic over
arbitrary link distances, giving precedence to those pages
that have a higher probability according to the topical lo-
cality assumption.

This allows the crawl to run over arbitrary link distances
without having to make assumptions about bridge page dis-
tances beforehand. The crawl will continue to find new rel-
evant pages, even if it will reach a state of lower marginal
utility. Thus the crawl runs in a breadth-first mode at the
beginning as all links are rather similar in priority. After
a while, when the crawler turns to less-prioritized pages,
newly discovered relevant pages trigger a restricted in-depth
traversal from that page on, leading to a continuous best-
first crawling. Hence the crawl steadily advances through
all low-priority pages but can concentrate efforts and perfor-
mance on newly discovered relevant pages to quickly explore
their link neighborhood.

We design the relevant functions for the crawl strategy as
follows. We distinguish between the actual evaluated rele-
vance eval of a page as determined by a classifier and the
derived predicted relevance of a page designated scorepage.

Figure 3: Prioritized crawl tree with crawl order

Each seed is assigned an initial scoreseed = initscore = 1.
We denote evalpage as an indicator function based on our
geoparser geo to determine whether a page contains rele-
vant location information at a high granularity and is part
of our given region. We currently use a binary classification
of geo-relevance.

evalpage = geopage =

{
1 if page is location-relevant,

0 if page is not location-relevant.

The relevance score of a location-relevant page is prop-
agated along links with an exponential decay. We denote
page.dist ≥ 1 as the link distance of a page to the last

relevant page P , P
dist−−→ page. We choose a dampening fac-

tor to model the diminishing relevance of more distanced
pages by a factor of decay, similar to the PageRank al-
gorithm [10]. For pages u → v the score would be cal-
culated as scorev = decay × scoreu, leading to a general
term scorepage = decaypage.dist · initscore. Since we keep
initscore at 1, we can remove the factor. With these defi-
nitions, we can fully define the relevance score of a page as
follows:

scorepage =


initscore if page ∈ seeds,

initscore if evalpage = 1,

decaypage.dist if P
dist−−→ page ∧ evalP = 1

∧evalpage = 0.

To ensure a prioritized crawl, the selection strategy for
pages is to select the next page next to be crawled from
all currently assessed candidate page URLs pi in the queue
queue.

next = p ∈ queue|scorep = max
pi∈queue

(scorepi)

When multiple pages fulfil the selection criteria, pages are
chosen randomly from the pool, while of course observing
politeness rules for Web crawlers.

Figure 3 visualizes the algorithm, with prioritization em-
ployed with scores according to the exponential dampening.
The value for decay is set at decay = 1

2
. The starting score

of initscore = 1 is multiplied by decay for each link encoun-
tered. For this example, links are annotated with the order
in which they will be crawled. The first page dampens its
outlink by the decay, thus their priority is computed as 0.5
and they are similarly likely to be crawled. In the next step,
the three outgoing links are again dampened to 0.25 and
crawled accordingly. Then, the page on the lower branch



gets evaluated as location-relevant, which means that its
score is replenished to 1 and subsequently, its children re-
ceive a higher priority score of 0.5. These are therefore pro-
cessed first. Only when the lower branch runs out of pages
or its remaining links have a low priority, can the upper
branch continue to be crawled.

Note that for more complex examples, the exact order
in which pages are crawled also depends on the processing
speed of the crawler for individual pages and might therefore
be subject to small changes in the crawl order. Still, the
prioritization allows for fine-grained control over the order
in which pages are crawled, providing an important step
towards best-first crawling.

4.3 Predictive Geospatial Focus
The location relevance propagation already constitutes a

rather simple best-first crawling approach. However, the
definition of the ’best’ link to follow relies solely on the link
distance measure. Furthermore, the amount of non-relevant
pages is rather high since all outlinks from a given page are
treated equally.

We refine the notion of what links should be considered
more relevant for prioritization to also include the actual
features of individual hyperlinks. From these features, we
compute a relevance prediction for each link.

The common rationale is that many links contain a de-
scription of the content of the linked page. However, they
do not necessarily do so with keywords detectable by a geo-
parser because, as mentioned before, the link description
might rather focus on the thematic aspects of the resource.
Still, links pointing to geospatially related Web content are
considered to contain detectable patterns. As an example,
the crawl tree in Figure 4 shows how a prediction on the
outgoing links from the initial pages can raise the priority
of a successful branch so that the relevant pages would be
found faster, provided that the link actually can be classified
as belonging to a successful crawl branch.

Figure 4: Crawl tree with adaptive link prediction

Note that the approach has to be aware of bridge pages
which could span multiple non-relevant pages. We extend
previous approaches [17, 19, 27] at link prediction to not only
arrive at a prediction on the page immediately linked, but
to also give an estimate on the location relevance of pages at
a larger distance. This allows a lookahead of multiple pages
on a single link and further improves the focused crawling
strategy. In the following, we describe how the prediction
lookahead is designed based on the used features and the
prediction on individual links.

4.4 Adaptive Link Prediction
The link prediction makes assumptions about pages still to

be crawled utilizing only information from the linking page
and already established knowledge. The context information
on a link is vital to the reliable prediction of the target
page’s content. Reviewing the relevant literature, e.g., [7,
20, 26, 27], we select several features of a hyperlink within
an HTML page to be considered for the link prediction:

– URL host is used to take clues from the hostname of a
URL. This in some cases already contains a location refer-
ence if the main topic of the pages deals with a geospatial
topic or with an entity related to a location but can also be
used to discover the main topic of discourse.

– URL path is used separately since use of indicator terms
is different on hostname and path. This can be used to
indicate individual pages dealing with a location or common
indicator of contact information.

– Anchor text and Link title is used to describe a target
page on the linking page and therefore can bear hints to-
wards the target’s content. This can be an indicator of the
information on the linked page, but needs not necessarily
use the same keywords present on that page.

– Surrounding text around a link gives information about
the context in which the link was used. The context can
carry more information than only the anchor itself [30].

– Domain switch is used to distinguish between links within
the same domain and those pointing outwards.

The features of each link are evaluated to derive the prob-
ability that the link will point towards geospatially relevant
pages. Also based on the literature [7, 12, 27], we utilize a
naive Bayes classifier on the link’s textual features. We leave
a comparison of various classification techniques as was done
in [31] to future work. We use a training dataset for which all
relevant pages and the links towards them are known. This
data is generated by the crawler during a training phase.
Since we can assess the relevance of a Web page, we can
implement the supervised learning without human interven-
tion. The teacher component is our geoparser which decides
whether pages are relevant to the geospatial topic. There-
fore, it is known which links actually linked to geospatially
relevant information and we can feed back this information
accordingly.

As per Bayes’ theorem, we denote the probability of a link

L with features ~fL leading to geospatially relevant pages:

p(geoRel1| ~fL) =
p(geoRel1) · p( ~fL|geoRel1)

p( ~fL)

where p(geoRel1) is the prior probability that a linked

page would contain geographic references. p( ~fL|geoRel1) is
the conditional probability that hyperlinks with the features
~fL would lead to pages containing geographic references, and

finally p( ~fL) is the prior probability that the given link fea-
tures are present in a hyperlink. We currently assume con-
ditional independence of the features. Given these, a new
link’s features can be evaluated to arrive at its probability
to point to a relevant page.

To also support online learning where we might not have
the full information available, we use a maximum likelihood
estimate which derives an estimate about the prior and con-
ditional probabilities from the training data. Furthermore,

as the full feature vectors ~fL are unlikely to repeat them-



selves between different links, we break up the feature vec-
tor into its constituent terms ti and derive the probabil-
ity for the individual terms instead, which would actually

count from the probability tables. p( ~fL|geoRel1) can then

be given as the estimate p̂( ~fL|geoRel1), We denote T as the

list of terms ti in ~fL with the number of terms |T | = n and
compute the estimate as

p̂( ~fL|geoRel1) =

n∏
i=1

p̂(ti|geoRel1)

We further estimate the probability of the term ti be-
ing present in geospatially relevant links Lgeorel1 . We use
Laplace smoothing to cover cases where terms are not present
in the training data, since the whole estimate would other-
wise drop to zero.

p̂(ti|geoRel1) =
|ti ∈ Lgeorel1 |+ 1∑

tk∈T

|tk ∈ Lgeorel1 |+ 1

This defines the probability of a link leading to relevant
pages based on individual terms of the examined features of
a link with respect to the training data.

4.5 Bridge Page-Aware Link Prediction
The described classifier only maintains a lookahead of one

for the link prediction. Since bridge pages occur frequently
within the geospatial topic, they have to be considered. We
therefore design the prediction to decide whether a link leads
to unsuccessful crawl branches or to bridge pages which de-
mands a multi-hop prediction.

The example in Figure 5 shows the prediction graph of one
Web page with one of its outlinks currently being evaluated
for the prediction. The prediction considers the pages reach-
able within several depth levels from the current page. The
challenge for the multi-depth prediction is of course that
the amount of reachable pages increases with any further
step. The trivial prediction depth of one only evaluates one
page. For a prediction depth of two, this is the number of all
pages linked to by the first page etc. Note that the predic-
tion only applies to the first single outlink. It incorporates a
prediction about further links, but these are not accessed at
prediction time. The prediction about successive pages can
be re-evaluated in successive steps when pages are actually
downloaded and more information becomes available during
a crawl.

Generalizing the previous equation for the geospatial rel-
evance probability of a link, we define the probability over
arbitrary distances. The depth prediction score depends on
the examined link and the prediction depth.

depthPredictionL(depth) = p(geoReldepth| ~fL)

=
p(geoReldepth) · p( ~fL|geoReldepth)

p( ~fL)

We combine the prediction scores of successive depths
into one measure. Since the reliability of the prediction
decreases with increasing prediction depth, we adjust by
adding a dampening factor to predictions of larger depth
as d(depth) = decaydepth, decay ∈ [0, 1]. We normalize this
against the sum of all dampening and arrive at the overall
link prediction score:

Figure 5: Prediction graph of a Web page

prediction(L) =

n∑
depth=1

d(depth) · depthPredictionL(depth)

n∑
depth=1

d(depth)

The geospatial relevance can only roughly be predicted
since the lack of corresponding features within the link pre-
diction does not imply a lack of geospatial information in
the linked pages. We therefore use the prediction score only
as a measure to boost pages to a higher priority, but not
to reduce it below the link-distance decay discussed in Sec-
tion 4.1. This delivers satisfactory results.

The overall priority priorityL of a link is defined by the
distance-based decay score scoreL which models an expo-
nential decay, refined by the link prediction predictionL

which can increase the priority of a link. The priority is
normalized to the interval [0, 1].

The prediction is normalized to fill the interval between
the link’s decay score value and the maximum priority. This
models the intuitive assumption that a link predicted for
certain to lead to a relevant page should be most highly
prioritized.

priority(L) = score(L) + prediction(L) · (1− score(L))

Using the prioritization selection function as defined in
Section 4.2, the crawler implements a best-first strategy
based on the fusion of distance-based and prediction-based
link evaluation. It is then able to efficiently retrieve even dis-
tanced relevant pages by targeting promising bridge pages.

4.6 Architecture
The integration of the described components into the ar-

chitecture of the adaptive geospatially focused crawler are
laid out in Figure 6. Other aspects of a geospatial search
engine such as indexing, storage, and query processing are
left out for clarity.

A frontier component is employed for data management.
It manages all link queues and handles link assignment to
multiple work threads, where URLs are processed and down-
loaded. All discovered links enter the frontier through the
link evaluation. The frontier selects the next link with the
highest priority to crawl from the prioritized link queue and



Figure 6: Architecture of the crawler

hands it to a work thread. This downloads the URL and es-
tablishes the relevance score of the page using the geoparser
component. Following, the links of the page are extracted.
The link extraction also handles the propagation of score
values to child pages. Using the link context on a page, a
prediction is computed for each link by using the trained
classifier. The original link is added to the visited pages
queue, where all already downloaded links are kept. The
extracted links are then processed by the link evaluation.
Each extracted link is compared against the visited pages
queue so no page can be downloaded twice. Finally, the
link evaluation combines the score values of the link and
computes the priority. The link is then inserted into the
prioritized queues according to its priority.

5. CRAWL STRATEGY EVALUATION
The goal of the evaluation is two-fold. First, we want

to measure the performance of the developed components
and the focused crawler, and second, we want to arrive at
a better understanding of the Web structure relating to our
task.

5.1 Methodology
To evaluate the geospatially focused crawler we evaluate

it against two other crawl strategies. The first is a com-
mon broad crawl that traverses the Web in an unbounded
breadth-first manner. A second comparison for the crawler
is the link distance heuristic that assigns priority values
based on distance from the last seen relevant page on a crawl
branch. In a previous paper [4], we already established that
a strict geospatial focus with a fixed cut-off distance will ex-
haust the crawl rather quickly. The results were similar on
the present testset, we therefore leave them out for clarity.

There are two main reasons for resources to be included
in a crawl for geospatial information. One is the identifi-
cation and extraction of geospatial information itself, the
other is the extraction of links leading to further resources.
So only resources that either carry location references or hy-
perlinks need to be considered in the crawl, all others can
be excluded without losing any relevant information. To re-
duce the amount of downloaded resources, we set up a set

Figure 7: Harvestrate of retrieved relevant pages
against all retrieved pages

of fixed filters that exclude resources based on content type,
URL patterns or content language. The address data we
are seeking is only present in textual Web documents and
further hyperlinks could only be extracted from HTML files.
We therefore remove all binary content from the crawl and of
the textual content, only keep HTML documents. Further
filters remove country code top level domains (TLD) that
cannot carry the German location references we are seek-
ing. An additional set of filters tries to identify and dismiss
crawler traps.

We created identical conditions for all crawls. The system
was initialized with a region of interest, the city of Oldenburg
in Germany and the geoparser was trained to this region. We
selected a seed set from the DMOZ Open Directory, where
we chose those pages under the geographical hierarchy that
deal with the city of Oldenburg. The crawler was started
with this seed set, the filters as described above were in
place.

The crawls each ran for a duration of about 24 hours.
The baseline crawl received no further changes. The link-
distance prioritization was parameterized as described in
Section 4.2. Finally, the adaptive geospatially focused crawler
was parameterized with values for decay = 1

2
; the prediction

depth was parameterized from 1 to 3. For the depth of 3,
we also varied the size of the set of training documents.

5.2 Results
The results of the evaluation clearly indicate that there ex-

ists a topical cohesion of location-related information on the
Web and that it is sufficient to support the focused crawling
strategy discussed in this paper. We further can show that
the described approach outperforms other crawl strategies.

5.2.1 Crawler performance
Focused crawling is a resource-constrained trade-off ap-

proach aimed at retrieving relevant pages much faster than
a common crawler, yet it might miss some relevant pages.
Considering the size of the current Web, it is not possible
to retrieve all pages. Since we do a crawl on the live Web,
we cannot give reliable values on recall as it remains unclear
what amount of potentially relevant pages are missed. How-
ever, as an estimate on precision and recall [36], we evaluate



Figure 8: Relative harvestrate of retrieved relevant
pages against all retrieved pages

Figure 9: Bridge page distances and tail lengths

Figure 10: Seed distances of relevant pages

the crawler by the amount of relevant pages it retrieves over
the time of a crawl and its harvest rate.

Figure 7 shows the harvest rate defined as the amount
of retrieved relevant pages drawn against the number of
overall downloaded resources for the three crawl strategies.
The adaptive geospatially focused crawling outperforms the
broad crawl and the link-distance strategy and displays a
steady growth. While at the beginning all crawls manage
to retrieve relevant pages near the seeds, the other crawls’
harvestrate begins to flatten after a while, while the adap-
tive system manages to uphold and even increase its perfor-
mance. This is clearly shown in Figure 8, which plots the
accumulated relative harvest rate against the overall down-
loaded resources. It demonstrates the good initial perfor-
mance of the system, which outperforms the other crawls in
the beginning by rapidly targeting promising pages. How-
ever, the initial peak is not sustainable and it drops as the
pages in the immediate vicinity of the seeds have been pro-
cessed. However, the crawler then again manages to effi-
ciently target further relevant pages during the remainder
of the crawl. At the end of the 24-hour crawl, which we
have plotted over the roughly 1.000.000 documents down-
loaded, the adaptive approach reached a harvest rate of
about 12% while the baseline retrieved 4% and the link-
distance-heuristic managed to retrieve 5.5% of relevant doc-
uments.

We have further evaluated the adaptive geospatially fo-
cused crawling with various parameters for the size of the
training set. From 30.000 up to 100.000 documents there
was no significant change. Regarding the prediction depth,
we found that a value of 3 performs significantly better than
a value of 2 and 1. Higher prediction depths had no more
significant influence on the results.

5.2.2 Location Distribution on the Web
While the results suggest the presence of linkage local-

ity, its characteristics need to be better examined. The
graph in Figure 9 shows the link distances as the number
of bridge pages between location-relevant pages. A value
of 0 means directly successive relevant pages. Addition-
ally, unsuccessful crawl branches are denoted as tails. These
branches started from a relevant page but then failed to
retrieve further relevant pages. The graph shows only few
longer tails. Combined with the analysis of the bridge pages,
this shows that location-relevant pages exhibit a loose top-
ical cohesion. Namely, there are pages on the crawl which
were only reached through long bridge page streaks. In more
than half the cases, the cohesion is only achieved by inter-
mediate bridge pages that link the relevant pages.

To complement the bridge page analysis, Figure 10 shows
the distance of relevant pages from the seeds. While rele-
vant pages occur near each other, as evidenced in Figure 9,
their distance from the seed reaches rather high values and
furthermore shows the necessity of the prediction and prior-
itization in the adaptive crawler to reach these pages with a
focused crawl.

5.3 Discussion
Geospatially focused crawling can benefit from the de-

tectable and exploitable cohesion of its topic, although the
cohesion is often weak. Through the inclusion of bridge
pages and the assumption of the loose cohesion, geospatially
focused crawling becomes feasible. While the inclusion of



more pages and therefore a larger distance from the seeds
produces an exponentially growing queue, the techniques de-
scribed in this paper can help to keep a crawl focused for a
long duration. Naturally for a crawl with these characteris-
tics, the inherent uncertainty about uncrawled pages leads
to a high ratio of non-relevant pages for a longer crawl. This
cannot be completely avoided, but is kept within manage-
able bounds. Finally, the distribution of location-bearing
Web pages – similar to crawling other topics – cannot be
fully predicted. There remain some pages whose content
cannot be properly predicted that would only be discovered
by an exhaustive crawl. Some of the relevant information
might only be found in rather obscure parts of the Web
graph, a long distance from any other relevant page. Thus,
the aim cannot be completeness for the topic but rather the
retrieval of substantial amounts of geospatial information.
Therefore, when a substantial amount of reachable relevant
pages have been found, the overall performance will decrease
and approach that of the broad crawl. However, durations as
described here are still far from the level of marginal utility.
Regarding long-term performance, our crawler manages to
keep up the advance on the baseline crawls even on longer
crawls. As the evaluation shows, the crawler manages to
uphold the geospatial focus even for larger crawl durations
within the demanding geospatial domain and can be used to
quickly generate a geospatial index.

6. CONCLUSION
In this paper, we proposed the adaptation of focused crawl-

ing for geospatial resource discovery and presented an effi-
cient design for a geospatial crawler. Utilizing link cohe-
sion between relevant pages, the crawler adapts itself to the
content and link features encountered during the crawl. A
prediction of location-relevance for uncrawled pages allows
a precise and fast crawl with limited resources. The bridge-
page-aware link prediction allows for a larger lookahead and
is suitable for the loose cohesion of the geospatial topic. The
designed adaptive geospatially focused crawler is a reliable
technique to retrieve a majority of location-relevant pages
much faster than ordinary crawlers. The analysis of the
retrieved data fosters understanding of the distribution of
location-related content on the Web. Building upon these
promising results, further steps will include an improvement
of the link prediction, the further analysis of dependency on
the seed sets and a more thorough analysis of the geospatial
Web graph to advance our understanding and use it to more
efficiently retrieve and index geospatial Web pages.

Acknowledgements
We thank our student C. Krumm for valuable contributions
to the system described in this paper. Further thanks go to
our students A. Waldenburger and T. Scheffler for help with
some of the analyses. Part of this work has been supported
by the state of Lower Saxony, Germany as a subproject of
the Niccimon and C3World projects.

7. REFERENCES
[1] C. C. Aggarwal, F. Al-Garawi, and P. S. Yu.

Intelligent crawling on the World Wide Web with
arbitrary predicates. In WWW ’01. ACM, 2001.

[2] D. Ahlers and S. Boll. Location-based Web search. In
A. Scharl and K. Tochterman, editors, The Geospatial
Web. Springer, London, 2007.

[3] D. Ahlers and S. Boll. Retrieving Address-based
Locations from the Web. In GIR ’08: 5th Workshop
on Geographic Information Retrieval, 2008.

[4] D. Ahlers and S. Boll. Urban Web Crawling. In S. Boll
and E. Wilde, editors, First International Workshop
on Location and the Web (LocWeb2008). ACM, 2008.

[5] E. Amitay, N. Har’El, R. Sivan, and A. Soffer.
Web-a-Where: Geotagging Web Content. In SIGIR
’04, pages 273–280, New York, NY, USA, 2004. ACM.

[6] R. Baeza-Yates, C. Castillo, M. Marin, and
A. Rodriguez. Crawling a Country: Better Strategies
than Breadth-First for Web Page Ordering. In WWW
’05, pages 864–872. ACM Press, 2005.

[7] L. Barbosa and J. Freire. An Adaptive Crawler for
Locating Hidden-Web Entry Points. In WWW ’07.
ACM, 2007.

[8] D. Bergmark, C. Lagoze, and A. Sbityakov. Focused
Crawls, Tunneling, and Digital Libraries. In ECDL
’02, pages 91–106, London, UK, 2002. Springer.

[9] S. Boll and D. Ahlers. A Web more Geospatial:
Insights into the Location Inside. In D. De Roure and
W. Hall, editors, Workshop on Understanding Web
Evolution: A Prerequisite for Web Science
(WebEvolve2008), 2008.

[10] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[11] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the Web. Computer Networks,
33(1):309–320, June 2000.

[12] S. Chakrabarti, K. Punera, and M. Subramanyam.
Accelerated Focused Crawling through Online
Relevance Feedback. In WWW ’02. ACM, 2002.

[13] S. Chakrabarti, M. van den Berg, and B. Dom.
Distributed Hypertext Resource Discovery Through
Examples. In VLDB Journal, pages 375–386, 1999.

[14] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused Crawling: A New Approach to Topic-Specific
Web Resource Discovery. Computer Networks,
31(11-16):1623–1640, 1999.

[15] J. Cho, H. Garcia-Molina, and L. Page. Efficient
crawling through URL ordering. In WWW7, 1998.

[16] B. D. Davison. Topical locality in the Web. In SIGIR
2000, pages 272–279. ACM Press, 2000.

[17] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and
M. Gori. Focused Crawling using Context Graphs. In
26th Intl. Conf. on Very Large Databases (VLDB
2000), pages 527–534, Cairo, Egypt, 2000.

[18] W. Gao, H. C. Lee, and Y. Miao. Geographically
focused collaborative crawling. In WWW ’06, 2006.

[19] A. M. Grigoriadis and G. Paliouras. Focused crawling
using temporal difference-learning. In SETN, pages
142–153. Springer, 2004.

[20] M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg,
M. Shtalhaim, and S. Ur. The shark-search algorithm.
An application: tailored Web site mapping. In
WWW7, 1998.



[21] M. Himmelstein. Local Search: The Internet Is the
Yellow Pages. IEEE Computer, 38(2):26–34, 2005.

[22] M. Jakob, M. Großmann, D. Nicklas, and
B. Mitschang. DCbot: Finding Spatial Information on
the Web. In L. Zhou, B. C. Ooi, and X. Meng, editors,
DASFAA 2005, volume 3453 of LNCS. Springer, 2005.

[23] M. Kamvar and S. Baluja. A large scale study of
wireless search behavior: Google mobile search. In
CHI ’06, pages 701–709. ACM, 2006.

[24] A. Markowetz, Y.-Y. Chen, T. Suel, X. Long, and
B. Seeger. Design and Implementation of a
Geographic Search Engine. In WebDB 2005, 2005.

[25] K. S. McCurley. Geospatial Mapping and Navigation
of the Web. In WWW ’01. ACM, 2001.

[26] F. Menczer, G. Pant, and P. Srinivasan. Topical web
crawlers: Evaluating adaptive algorithms. ACM
Trans. Inter. Tech., 4(4):378–419, 2004.

[27] A. Micarelli and F. Gasparetti. Adaptive Focused
Crawling. In The Adaptive Web, volume 4321 of
LNCS, pages 231–262. Springer, 2007.

[28] Y. Morimoto, M. Aono, M. E. Houle, and K. S.
McCurley. Extracting Spatial Knowledge from the
Web. In SAINT ’03. IEEE, 2003.

[29] M. Najork and J. L. Wiener. Breadth-First Crawling
Yields High-Quality Pages. In WWW10, pages
114–118, Hong Kong, May 2001. Elsevier Science.

[30] G. Pant. Deriving link-context from HTML tag tree.
In DMKD ’03. ACM, 2003.

[31] G. Pant and P. Srinivasan. Learning to Crawl:
Comparing Classification Schemes. ACM Trans. Inf.
Syst., 23(4):430–462, 2005.

[32] T. Rattenbury, N. Good, and M. Naaman. Towards
Automatic Extraction of Event and Place Semantics
from Flickr Tags. In SIGIR ’07. ACM, 2007.

[33] J. Rennie and A. McCallum. Using Reinforcement
Learning to Spider the Web Efficiently. In ICML ’99,
1999.

[34] M. Sanderson and J. Kohler. Analyzing geographic
queries. In ACM SIGIR Workshop on Geographic
Information Retrieval, Sheffield, UK, 2004.

[35] S. Schockaert and M. D. Cock. Neighborhood
Restrictions in Geographic IR. In SIGIR ’07, 2007.

[36] P. Srinivasan, F. Menczer, and G. Pant. A General
Evaluation Framework for Topical Crawlers.
Information Retrieval, 8:417–447, 2004.

[37] T. T. Tang, D. Hawking, N. Craswell, and K. Griffiths.
Focused Crawling for both Topical Relevance and
Wuality of Medical Information. In CIKM ’05, pages
147–154, New York, NY, USA, 2005. ACM.

[38] T. T. Tang, D. Hawking, N. Craswell, and R. S.
Sankaranarayana. Focused Crawling in Depression
Portal Search: A Feasibility Study. In ADCS 2004,
pages 2–9, Melbourne, Australia, 2004.


