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Orientation

Trade-off between time (steps to wait for intended service)
and availability increase (to get intended service)
in distributed systems

How much ddelay is desired? ⇒ as short as possible...

How available should your system be? ⇒ as high as possible...

What is a good trade-off in between delay and availability?
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Orientation

masking nonmasking
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t ime for stabil ization
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Instantaneous Window Availability
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Availability

Availability : A =
MTTF

MTBF
(1)

instantaneous availability: at some arbitrary time k the system is
available: A(k)
limiting availability: the same, as k approaches ∞
analysis determines limiting, but for simulation we can only choose
high k
at some arbitrary point k, what are the chances that we get the
intended (correct) service?
and what would happen if the system fails but we can wait for at
most w timesteps for the system to recover?
Instantaneous Window Availability (IWA): given that a system is
not available at k , what is the availability increase if we wait for at
most w steps?
How many steps must one wait to achieve a certain overall
availability?
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System Model

serial execution semantics

central demon/scheduler/monitor

shared memory model

perfect fault detection

fault model: transient faults strike mem register with static probability

distributed self-stabilizing algorithm

convergence: ∃t ≥ t0 : c(t) |= P
consistency: ∀tl > tk : c(tk) |= P ⇒ c(tl) |= P

two systems:

distributed self-stabilizing breadth first search (BFS) [Dol00]
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Nils Müllner (Universität Oldenburg) Trade-off: System Avbl vs Time Redundancy 7 / 19



System Model

serial execution semantics

central demon/scheduler/monitor

shared memory model

perfect fault detection

fault model: transient faults strike mem register with static probability

distributed self-stabilizing algorithm
convergence: ∃t ≥ t0 : c(t) |= P
consistency: ∀tl > tk : c(tk) |= P ⇒ c(tl) |= P

two systems:

a

b c

a

d

e

b c

distributed self-stabilizing breadth first search (BFS) [Dol00]
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Methods

1 Analysis: build state space (3p: 6561, 5p: ∼7 Billion), form IWA in
PCTL with final argument, calculate with PRISM [KNP07]

P =?[F <= 100”state6523”{true}{min}]

2 Simulation: build system, execute n steps, see, if c(t) |= P, if not,
count i until c(t + i) |= P [MDT08]
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Results 3p System - Analysis
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Results 3p System - Simulation
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Results 3p System - Simulation - Standard Deviation
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Comparison - Analysis & Simulation
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Results 5p System - Simulation
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Conclusion

Relation: IWA vs. Delay

Notion of IWA necessary to argue for trade-off.

Analysis & Simulation coincide well.

Limits of analysis (state space explosion) obvious,
for simulation important for larger systems
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Future Work

1 Framework for the Automatic Derivation of Trade-off solutions

find Pareto-optimal solutions
more dimensions (consistency, frequency, ...)
distributed analysis to cope with complex systems

2 Real world experiments with WSNs: constistency vs. availability vs.
energy consumption vs. collisions vs. code strength vs. delay vs. ...
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Thank your for your attention!
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