Combining Decomposition and Lumping to Evaluate Semi-hierarchical Systems

Nils Müllner, Oliver Theel, Martin Fränzle

Fakultät II, Department für Informatik Carl von Ossietzky Universität Oldenburg

Agenda I

1 Brief Problem Outline

2 Practical Application

3 Conclusion

Underlying question

- How dependable is a distributed system over time?
- Measurable answer via reliability (failsafe fault tolerant) or availability (non-masking fault tolerant)
 - availability: probability that system is safe at some time point
 - reliability: probability that system is safe until some time point

Approach

Analytically computing system dependability:

constructing a transition model (e.g. Markov model or Petri net) from a deterministic system model and a probabilistic environment model.

Challenge with this method:

▶ the transition model is exponential in the size of the system model ⇒ state space explosion!

Problem Outline

To compute the dependability of a distributed system, its transition model must be constructed. The approach is inherently confined as the transition model is exponential in the size of the system model. A method to dampen the state space explosion is required.

General Approach

Dissect/Decompose system; analyze sub-systems step-by-step.

Related Work

Previous work covered

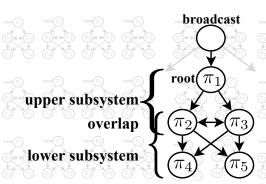
hierarchically structured systems [AINA2012]: decomposed top→down.

A parallel study emphasized that

unstructured systems [AINA2014a] are no challenge: decomposition arbitrary.

This study now discusses

semi-hierarchical systems: accounting for local cyclic dependencies.


Motivation

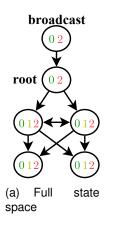
- Decomposition of distributed systems relies on the dependencies among processes.
- When there are no dependencies, each process can be evaluated on its own, eventually arriving at a counting abstraction over all processes.
- On the opposite site, each process relies on all other processes (heterarchy). Global cyclic dependencies cannot be solved (accurately).
- Decomposition of hierarchic systems received the BPA two years ago [AINA2012].
- ➤ To close this cycle, decomposition with local cyclic dependencies is discussed.

Motivation

- Decomposition of distributed systems relies on the dependencies among processes.
- When there are no dependencies, each process can be evaluated on its own, eventually arriving at a counting abstraction over all processes.
- On the opposite site, each process relies on all other processes (heterarchy). Global cyclic dependencies cannot be solved (accurately).
- Decomposition of hierarchic systems received the BPA two years ago [AINA2012].
- ➤ To close this cycle, decomposition with local cyclic dependencies is discussed.

Wireless Sensor Network

- semi-parallel execution semantics
- weak probabilistic scheduler
- sporadic faults affect only volatile process memory
- sub-systems overlap in cycle
- safety: each process stores currently broadcasted type


- semi-parallel execution semantics
- weak probabilistic scheduler
- sporadic faults affect only volatile process memory
- sub-systems overlap in cycle
- safety: each process stores currently broadcasted type

- semi-parallel execution semantics
- weak probabilistic scheduler
- sporadic faults affect only volatile process memory
- sub-systems overlap in cycle
- safety: each process stores currently broadcasted type

- semi-parallel execution semantics
- weak probabilistic scheduler
- sporadic faults affect only volatile process memory
- sub-systems overlap in cycle
- safety: each process stores currently broadcasted type

- semi-parallel execution semantics
- weak probabilistic scheduler
- sporadic faults affect only volatile process memory
- sub-systems overlap in cycle
- safety: each process stores currently broadcasted type

States

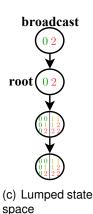


Figure: State space reduction by lumping bisimilar states $2 \cdot 2 \cdot 3^4 = 324$ states $2 \cdot 2 \cdot 6 \cdot 6 = 144$ states

Decomposition Schema

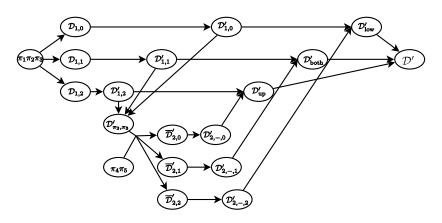


Figure: Decomposing schema for the WSN transition system

Decomposition Schema

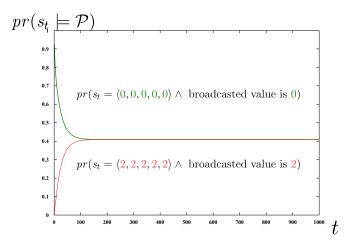


Figure: Result of the WSN example – converging consistency and inertia

Decomposition Schema

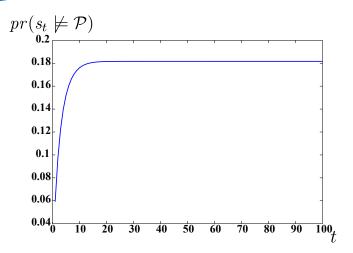


Figure: Result of the WSN example – converging consistency and inertia

- scope: computing fault tolerance and dependability measures of distributed systems
- method: decomposition and local lumping to cope with state space explosion
- focus: semi-hierarchic systems, i.e. globally hierarchic systems containing local cycles
- result: not only residential processes sub-systems may be cyclic dependent, but also processes within overlaps

- scope: computing fault tolerance and dependability measures of distributed systems
- method: decomposition and local lumping to cope with state space explosion
- focus: semi-hierarchic systems, i.e. globally hierarchic systems containing local cycles
- result: not only residential processes sub-systems may be cyclic dependent, but also processes within overlaps

- scope: computing fault tolerance and dependability measures of distributed systems
- method: decomposition and local lumping to cope with state space explosion
- ▶ focus: semi-hierarchic systems, i.e. globally hierarchic systems containing local cycles
- result: not only residential processes sub-systems may be cyclic dependent, but also processes within overlaps

- scope: computing fault tolerance and dependability measures of distributed systems
- method: decomposition and local lumping to cope with state space explosion
- focus: semi-hierarchic systems, i.e. globally hierarchic systems containing local cycles
- result: not only residential processes sub-systems may be cyclic dependent, but also processes within overlaps

This closes a cycle of eight papers that resulted in my dissertation. Five of which were published within AINA context.

THANK YOU AINA Committees, especially Makoto Takizawa, Leonard Barolli and Fatos Xhafa!

Questions?