Unmasking Fault Tolerance: Masking vs. Non-masking Fault-tolerant Systems

Nils Müllner
nils.muellner@informatik.uni-oldenburg.de

System Software and Distributed Systems Group,
Universität Oldenburg, Germany

June 30, 2009
Table of contents

1 Who am I?
2 Unmasking Fault Tolerance
3 Simulation, Analysis and the Real World
4 Results So Far
5 Work In Progress
6 Conclusion
Automatic Verification and Analysis of Complex Systems

- transregional: 3 Universities, 3 * 4 years, now in year 6
- Oldenburg, Saarbrücken, Freiburg
- hybrid systems
- fault model driven stochastic model checking
- 12 supervisors, 19 postdocs, 54 students (18 finished)
Automatic Verification and Analysis of Complex Systems
transregional: 3 Universities, 3 * 4 years, now in year 6
Oldenburg, Saarbrücken, Freiburg
hybrid systems
fault model driven stochastic model checking
12 supervisors, 19 postdocs, 54 students (18 finished)
Automatic Verification and Analysis of Complex Systems

transregional: 3 Universities, 3 * 4 years, now in year 6

Oldenburg, Saarbrücken, Freiburg

- hybrid systems
- fault model driven stochastic model checking
- 12 supervisors, 19 postdocs, 54 students (18 finished)
Automatic Verification and Analysis of Complex Systems

transregional: 3 Universities, 3 * 4 years, now in year 6

Oldenburg, Saarbrücken, Freiburg

hybrid systems

fault model driven stochastic model checking

12 supervisors, 19 postdocs, 54 students (18 finished)
Automatic Verification and Analysis of Complex Systems

transregional: 3 Universities, 3×4 years, now in year 6

Oldenburg, Saarbrücken, Freiburg

hybrid systems

fault model driven stochastic model checking

12 supervisors, 19 postdocs, 54 students (18 finished)
Automatic Verification and Analysis of Complex Systems
transregional: 3 Universities, 3 * 4 years, now in year 6
Oldenburg, Saarbrücken, Freiburg
hybrid systems
fault model driven stochastic model checking
12 supervisors, 19 postdocs, 54 students (18 finished)
Graduate School funded by Deutsche Forschungsgemeinschaft DFG (German Research Foundation)

- Fault Tolerance Metrics = Availability, Reliability
- founded April 1st 2005
- 13 supervisors, 8 students (8 finished, 14 scholarships)
Graduate School funded by Deutsche Forschungsgemeinschaft DFG (German Research Foundation)

Fault Tolerance Metrics = Availability, Reliability

founded April 1st 2005

13 supervisors, 8 students (8 finished, 14 scholarships)
Graduate School funded by Deutsche Forschungsgemeinschaft DFG (German Research Foundation)

Fault Tolerance Metrics = Availability, Reliability

founded April 1st 2005

13 supervisors, 8 students (8 finished, 14 scholarships)
Graduate School funded by Deutsche Forschungsgemeinschaft DFG (German Research Foundation)

Fault Tolerance Metrics = Availability, Reliability

founded April 1st 2005

13 supervisors, 8 students (8 finished, 14 scholarships)
Thesis Topics

- **MSc**: Simulation of Self-Stabilizing Distributed Algorithms to Determine Fault Tolerance Measures
 - distributed systems
 - self-stabilizing algorithms (breadth-/depth-first search, mutual exclusion, leader election)
 - transient faults

- **PhD**: Unmasking Fault Tolerance
Thesis Topics

MSc: Simulation of Self-Stabilizing Distributed Algorithms to Determine Fault Tolerance Measures
- distributed systems
- self-stabilizing algorithms (breadth-/depth-first search, mutual exclusion, leader election)
- transient faults

PhD: Unmasking Fault Tolerance
MSc: Simulation of Self-Stabilizing Distributed Algorithms to Determine Fault Tolerance Measures
- distributed systems
- self-stabilizing algorithms (breadth-/depth-first search, mutual exclusion, leader election)
- transient faults

PhD: Unmasking Fault Tolerance
Motivation

- focusing on distributed systems
- fault tolerance: reliability, availability, maintainability, ...
- it is a quality of service

<table>
<thead>
<tr>
<th></th>
<th>safe</th>
<th>(\neg) safe</th>
</tr>
</thead>
<tbody>
<tr>
<td>live</td>
<td>masking</td>
<td>nonmasking</td>
</tr>
<tr>
<td>(\neg) live</td>
<td>fail safe</td>
<td>-</td>
</tr>
</tbody>
</table>

- nonmasking fault tolerance exposes user to faults
- masking fault tolerance conceals faults
- but at what cost?
Motivation

- focusing on distributed systems
- fault tolerance: reliability, availability, maintainability, ...
- it is a quality of service

<table>
<thead>
<tr>
<th></th>
<th>safe</th>
<th>¬ safe</th>
</tr>
</thead>
<tbody>
<tr>
<td>live</td>
<td>masking</td>
<td>nonmasking</td>
</tr>
<tr>
<td>¬ live</td>
<td>fail safe</td>
<td>-</td>
</tr>
</tbody>
</table>

- nonmasking fault tolerance exposes user to faults
- masking fault tolerance conceals faults
- but at what cost?
Motivation

- focusing on distributed systems
- fault tolerance: reliability, availability, maintainability, ...
- it is a quality of service

<table>
<thead>
<tr>
<th></th>
<th>safe</th>
<th>¬ safe</th>
</tr>
</thead>
<tbody>
<tr>
<td>live</td>
<td>masking</td>
<td>nonmasking</td>
</tr>
<tr>
<td>¬ live</td>
<td>fail safe</td>
<td>-</td>
</tr>
</tbody>
</table>

- nonmasking fault tolerance exposes user to faults
- masking fault tolerance conceals faults
- but at what cost?
Motivation

- focusing on distributed systems
- fault tolerance: reliability, availability, maintainability, ...
- it is a quality of service

<table>
<thead>
<tr>
<th>safe</th>
<th>¬ safe</th>
</tr>
</thead>
<tbody>
<tr>
<td>live</td>
<td>masking</td>
</tr>
<tr>
<td>¬ live</td>
<td>fail safe</td>
</tr>
</tbody>
</table>
Motivation

- focusing on distributed systems
- fault tolerance: reliability, availability, maintainability, ...
- it is a quality of service

<table>
<thead>
<tr>
<th></th>
<th>safe</th>
<th>¬ safe</th>
</tr>
</thead>
<tbody>
<tr>
<td>live</td>
<td>masking</td>
<td>nonmasking</td>
</tr>
<tr>
<td>¬ live</td>
<td>fail safe</td>
<td>-</td>
</tr>
</tbody>
</table>

- nonmasking fault tolerance exposes user to faults
- masking fault tolerance conceals faults
- but at what cost?
Motivation

- focusing on distributed systems
- fault tolerance: reliability, availability, maintainability, ...
- it is a quality of service

<table>
<thead>
<tr>
<th></th>
<th>safe</th>
<th>¬ safe</th>
</tr>
</thead>
<tbody>
<tr>
<td>live</td>
<td>masking</td>
<td>nonmasking</td>
</tr>
<tr>
<td>¬ live</td>
<td>fail safe</td>
<td>-</td>
</tr>
</tbody>
</table>

- nonmasking fault tolerance exposes user to faults
- masking fault tolerance conceals faults
- but at what cost?
Motivation

- cost of masking: redundancy
 - spatial: coding, TMR, soft-/hardware
 - temporal: retransmission, multiplexing

- tradeoff between degree of masking vs. cost not investigated, yet

- how much time/space per "quality of service"?
Motivation

- cost of masking: redundancy
 - spatial: coding, TMR, soft-/hardware
 - temporal: retransmission, multiplexing

- tradeoff between degree of masking vs. cost not investigated, yet

- how much time/space per "quality of service"?
Motivation

- cost of masking: redundancy
 - spatial: coding, TMR, soft-/hardware
 - temporal: retransmission, multiplexing

- tradeoff between degree of masking vs. cost not investigated, yet

- how much time/space per "quality of service"?
Motivation

- cost of masking: redundancy
 - spatial: coding, TMR, soft-/hardware
 - temporal: retransmission, multiplexing

- tradeoff between degree of masking vs. cost not investigated, yet

- how much time/space per "quality of service"?
Motivation

- cost of masking: redundancy
 - spatial: coding, TMR, soft-/hardware
 - temporal: retransmission, multiplexing

- tradeoff between degree of masking vs. cost not investigated, yet

- how much time/space per “quality of service”?
Scientific Triangle

Real World Experiments

Simulation

Analysis
Methods for Derivation

- formal analysis \Rightarrow state space explosion
- simulation \Rightarrow inaccurate, no proof
- real world experiments \Rightarrow expensive
Methods for Derivation

- formal analysis \Rightarrow state space explosion
- simulation \Rightarrow inaccurate, no proof
- real world experiments \Rightarrow expensive
Methods for Derivation

- formal analysis \Rightarrow state space explosion
- simulation \Rightarrow inaccurate, no proof
- real world experiments \Rightarrow expensive
Methods for Derivation

- formal analysis \implies state space explosion
- simulation \implies inaccurate, no proof
- real world experiments \implies expensive
Methods for Derivation

- formal analysis \Rightarrow state space explosion
- simulation \Rightarrow inaccurate, no proof
- real world experiments \Rightarrow expensive
Methods for Derivation

- formal analysis \Rightarrow state space explosion
- simulation \Rightarrow inaccurate, no proof
- real world experiments \Rightarrow expensive
Formal Analysis

- based on Markov models (DTMC, CTMC, DTMDP, CTMDP):
 - probabilistic model checker PRISM:
 - generates model (3 proc \Rightarrow 6561 states, 5 proc \Rightarrow~ 7 billion states)
 - checks model against predicates
 - gives quantitative answers (e.g., 0.0756312876123 is the steady state probability of state x)
 - can express reliability & availability
 - not parallelized (uses only one core per instance)
 - potential for further optimization
 - highly precise
Formal Analysis

- based on Markov models (DTMC, CTMC, DTMDP, CTMDP):

 - probabilistic model checker PRISM:
 - generates model (3 proc ⇒ 6561 states, 5 proc ⇒ ~ 7 billion states)
 - checks model against predicates
 - gives quantitative answers (e.g., 0.0756312876123 is the steady state probability of state x)
 - can express reliability & availability

- not parallelized (uses only one core per instance)

- potential for further optimization

- highly precise
Formal Analysis

- based on Markov models (DTMC, CTMC, DTMDP, CTMDP):

- probabilistic model checker PRISM:
 - generates model (3 proc $\Rightarrow 6561$ states, 5 proc $\Rightarrow \sim 7$ billion states)
 - checks model against predicates
 - gives quantitative answers (e.g., 0.0756312876123 is the steady state probability of state x)
 - can express reliability & availability

- not parallelized (uses only one core per instance)

- potential for further optimization

- highly precise
Formal Analysis

- based on Markov models (DTMC, CTMC, DTMDP, CTMDP):
 - probabilistic model checker PRISM:
 - generates model (3 proc ⇒ 6561 states, 5 proc ⇒ ~ 7 billion states)
 - checks model against predicates
 - gives quantitative answers (e.g., 0.0756312876123 is the steady state probability of state x)
 - can express reliability & availability

- not parallelized (uses only one core per instance)
- potential for further optimization
- highly precise

Nils Müllner (Universität Oldenburg)
Formal Analysis

- based on Markov models (DTMC, CTMC, DTMDP, CTMDP):
 - probabilistic model checker PRISM:
 - generates model (3 proc $\Rightarrow 6561$ states, 5 proc $\Rightarrow \sim 7$ billion states)
 - checks model against predicates
 - gives quantitative answers (e.g., 0.0756312876123 is the steady state probability of state x)
 - can express reliability & availability

- not parallelized (uses only one core per instance)

- potential for further optimization

- highly precise
Formal Analysis

- based on Markov models (DTMC, CTMC, DTMDP, CTMDP):
 - probabilistic model checker PRISM:
 - generates model (3 proc ⇒ 6561 states, 5 proc ⇒∼ 7 billion states)
 - checks model against predicates
 - gives quantitative answers (e.g., 0.0756312876123 is the steady state probability of state x)
 - can express reliability & availability

- not parallelized (uses only one core per instance)
- potential for further optimization
- highly precise
Formal Analysis

- based on Markov models (DTMC, CTMC, DTMDP, CTMDP):

- probabilistic model checker PRISM:
 - generates model (3 proc ⇒ 6561 states, 5 proc ⇒ ~ 7 billion states)
 - checks model against predicates
 - gives quantitative answers (e.g., 0.0756312876123 is the steady state probability of state x)
 - can express reliability & availability

- not parallelized (uses only one core per instance)

- potential for further optimization

- highly precise
Formal Analysis

- Based on Markov models (DTMC, CTMC, DTMDP, CTMDP):
 - Probabilistic model checker PRISM:
 - Generates model (3 proc \Rightarrow 6561 states, 5 proc \Rightarrow \sim 7 billion states)
 - Checks model against predicates
 - Gives quantitative answers (e.g., 0.0756312876123 is the steady state probability of state x)
 - Can express reliability & availability

- Not parallelized (uses only one core per instance)

- Potential for further optimization

- Highly precise
Formal Analysis

- based on Markov models (DTMC, CTMC, DTMDP, CTMDP):
 - probabilistic model checker PRISM:
 - generates model (3 proc $\Rightarrow 6561$ states, 5 proc $\Rightarrow \sim 7$ billion states)
 - checks model against predicates
 - gives quantitative answers (e.g., 0.0756312876123 is the steady state probability of state x)
 - can express reliability & availability

- not parallelized (uses only one core per instance)

- potential for further optimization

- highly precise
based on simulation framework *SiSSDA* (Simulator for Self-Stabilizing Distributed Algorithms)

- derives approximate results fast and refines them over time
- delivers no proof
- runs parallelized, utilizing up to \(n + 2 \) cores
 (nodes + fault-injector + server)
- based on simulation framework *SiSSDA* (Simulator for Self-Stabilizing Distributed Algorithms)
- derives approximate results fast and refines them over time
- delivers no proof
- runs parallelized, utilizing up to $n + 2$ cores (nodes + fault-injector + server)
based on simulation framework SiSSDA
(Simulator for Self-Stabilizing Distributed Algorithms)
derives approximate results fast and refines them over time
delivers no proof
runs parallelized, utilizing up to $n + 2$ cores
(nodes + fault-injector + server)
based on simulation framework SiSSDA (Simulator for Self-Stabilizing Distributed Algorithms)
- derives approximate results fast and refines them over time
- delivers no proof
- runs parallelized, utilizing up to \(n + 2 \) cores (nodes + fault-injector + server)
Real World Experiments

- applicable scenarios: wireless sensor networks (WSN)
 - too expensive (≈200 AUD/mote, ≈100 motes for a realistic network)
 - too time intensive (program and place 100 motes, charge 100 batteries, measure and evaluate)
 - hence, derivation of good solutions by analysis & simulation before the testing in real world should save money/time
Real World Experiments

- applicable scenarios: wireless sensor networks (WSN)
 - too expensive (~ 200 AUD/mote, ~ 100 motes for a realistic network)
 - too time intensive (program and place 100 motes, charge 100 batteries, measure and evaluate)
 - hence, derivation of good solutions by analysis & simulation before the testing in real world should save money/time
Real World Experiments

- applicable scenarios: wireless sensor networks (WSN)
 - too expensive (\sim200 AUD/mote, \sim100 motes for a realistic network)
 - too time intensive (program and place 100 motes, charge 100 batteries, measure and evaluate)

 hence, derivation of good solutions by analysis & simulation before the testing in real world should save money/time
Real World Experiments

- applicable scenarios: wireless sensor networks (WSN)

 - too expensive (\(\sim 200\) AUD/mote, \(\sim 100\) motes for a realistic network)

 - too time intensive (program and place 100 motes, charge 100 batteries, measure and evaluate)

 - hence, derivation of good solutions by analysis & simulation before the testing in real world should save money/time
Combining the Three Approaches

- build small scenarios for analysis and simulation

- verify simulation results by analysis for small scenarios

- after simulation & analysis proved fine for small systems, optimize large scenarios based on simulation results

- result: manageable set of close-to-optimal solutions

- then test given results in real world for real measures
Combining the Three Approaches

- build small scenarios for analysis and simulation

- verify simulation results by analysis for small scenarios

 - after simulation & analysis proved fine for small systems, optimize large scenarios based on simulation results

 - result: manageable set of close-to-optimal solutions

 - then test given results in real world for real measures
Combining the Three Approaches

- build small scenarios for analysis and simulation
- verify simulation results by analysis for small scenarios
- after simulation & analysis proved fine for small systems, optimize large scenarios based on simulation results
 - result: manageable set of close-to-optimal solutions
 - then test given results in real world for real measures
Combining the Three Approaches

- build small scenarios for analysis and simulation
- verify simulation results by analysis for small scenarios
- after simulation & analysis proved fine for small systems, optimize large scenarios based on simulation results
- result: manageable set of close-to-optimal solutions
- then test given results in real world for real measures
Results So Far

- Simulation and analysis deliver similar results (two papers)

- Derivation of fault tolerance measures challenging
 - Accuracy of results vs computation time
 - System model definition must be extremely precise (e.g., communication model)

- Definition of new metrics (Instantaneous Window Availability)
Results So Far

- simulation and analysis deliver similar results (two papers)

- derivation of fault tolerance measures challenging
 - accuracy of results vs computation time
 - system model definition must be extremely precise (e.g., communication model)

- definition of new metrics (Instantaneous Window Availability)
Results So Far

- simulation and analysis deliver similar results (two papers)

- derivation of fault tolerance measures challenging
 - accuracy of results vs computation time
 - system model definition must be extremely precise (e.g., communication model)

- definition of new metrics (Instantaneous Window Availability)
Results So Far

- simulation and analysis deliver similar results (two papers)

- derivation of fault tolerance measures challenging
 - accuracy of results vs computation time
 - system model definition must be extremely precise (e.g., communication model)

- definition of new metrics (Instantaneous Window Availability)
Results So Far

- Simulation and analysis deliver similar results (two papers)

- Derivation of fault tolerance measures challenging
 - Accuracy of results vs computation time
 - System model definition must be extremely precise (e.g., communication model)

- Definition of new metrics (Instantaneous Window Availability)
Instantaneous Window Availability

- for measuring relation/tradeoff between cost (time) and degree of masking

- to be extended: IW reliability, maintainability,...

- to be extended: relation of cost (space) and degree of masking
Instantaneous Window Availability

- for measuring relation/tradeoff between cost (time) and degree of masking

- to be extended: IW reliability, maintainability,...

- to be extended: relation of cost (space) and degree of masking
Instantaneous Window Availability

- for measuring relation/tradeoff between cost (time) and degree of masking

- to be extended: IW reliability, maintainability, ...

- to be extended: relation of cost (space) and degree of masking
Instantaneous Window Availability

(a) (b)

Nils Müllner (Universität Oldenburg) Unmasking Fault Tolerance 16 / 25
- automatic computation of Pareto-optimal solution sets

- derivation of trade-off between availability, consistency and redundancy (space) for WSNs
- automatic computation of Pareto-optimal solution sets

```
MoOP -> FEMKE
  |   |   |
  v   v   v
test sol. result
  |   |   |
  v   v   v
PRISM
```

- derivation of trade-off between availability, consistency and redundancy (space) for WSNs
Conclusion

- deriving a good trade-off between masking and nonmasking is not trivial
 - state space explosion in analysis
 - inaccurate results in simulation
 - high costs in real world
 - problems are often too complex
 - to model
 - to analyze
 - simulation alleviates this burden somewhat at the cost of accuracy/proof

 Yet, satisfactory solutions can be derived in a reasonable amount of time, if exact calculation takes too long.
Conclusion

- deriving a good trade-off between masking and nonmasking is not trivial
 - state space explosion in analysis
 - inaccurate results in simulation
 - high costs in real world
- problems are often too complex to model or to analyze
- simulation alleviates this burden somewhat at the cost of accuracy/proof
- yet, satisfactory solutions can be derived in a reasonable amount of time, if exact calculation takes too long
Conclusion

- deriving a good trade-off between masking and nonmasking is not trivial
 - state space explosion in analysis
 - inaccurate results in simulation
 - high costs in real world
- problems are often too complex
 - to model
 - to analyze
- simulation alleviates this burden somewhat at the cost of accuracy/proof
- yet, satisfactory solutions can be derived in a reasonable amount of time if exact calculation takes too long
Conclusion

- deriving a good trade-off between masking and nonmasking is not trivial
 - state space explosion in analysis
 - inaccurate results in simulation
 - high costs in real world
- problems are often too complex to model to analyze
- simulation alleviates this burden somewhat at the cost of accuracy/proof
- yet, satisfactory solutions can be derived in a reasonable amount of time if exact calculation takes too long
Conclusion

- deriving a good trade-off between masking and nonmasking is not trivial
 - state space explosion in analysis
 - inaccurate results in simulation
 - high costs in real world
- problems are often too complex
 - to model
 - to analyze
- simulation alleviates this burden somewhat at the cost of accuracy/proof
- yet, satisfactory solutions can be derived in a reasonable amount of time, if exact calculation takes too long
Conclusion

- deriving a good trade-off between masking and nonmasking is not trivial
 - state space explosion in analysis
 - inaccurate results in simulation
 - high costs in real world

- problems are often too complex
 - to model
 - to analyze

- simulation alleviates this burden somewhat at the cost of accuracy/proof

- yet, satisfactory solutions can be derived in a reasonable amount of time, if exact calculation takes too long
deriving a good trade-off between masking and nonmasking is not trivial

- state space explosion in analysis
- inaccurate results in simulation
- high costs in real world

problems are often too complex

- to model
- to analyze

simulation alleviates this burden somewhat at the cost of accuracy/proof

yet, satisfactory solutions can be derived in a reasonable amount of time, if exact calculation takes too long
Conclusion

- deriving a good trade-off between masking and nonmasking is not trivial
 - state space explosion in analysis
 - inaccurate results in simulation
 - high costs in real world
- problems are often too complex
 - to model
 - to analyze
- simulation alleviates this burden somewhat at the cost of accuracy/proof

yet, satisfactory solutions can be derived in a reasonable amount of time, if exact calculation takes too long.

- **Conclusion**

 - deriving a good trade-off between masking and nonmasking is not trivial
 - state space explosion in analysis
 - inaccurate results in simulation
 - high costs in real world

 - problems are often too complex
 - to model
 - to analyze

 - simulation alleviates this burden somewhat at the cost of accuracy/proof

 - yet, *satisfactory* solutions can be derived in a reasonable amount of time, if exact calculation takes too long

self-stabilizing systems are nonmasking fault tolerant

during stabilization/repair phase, user is exposed to faults

why not even weaken nonmasking self-stabilizing systems?

unmask fault tolerance even below nonmasking...
self-stabilizing systems are nonmasking fault tolerant

during stabilization/repair phase, user is exposed to faults

why not even weaken nonmasking self-stabilizing systems?

unmask fault tolerance even below nonmasking...
• self-stabilizing systems are nonmasking fault tolerant

• during stabilization/repair phase, user is exposed to faults

• why not even weaken nonmasking self-stabilizing systems?

• unmask fault tolerance even below nonmasking...
self-stabilizing systems are nonmasking fault tolerant

during stabilization/repair phase, user is exposed to faults

why not even weaken nonmasking self-stabilizing systems?

unmask fault tolerance even below nonmasking...
Bonus: fun with weakening the masking property 2/3

Unmasking Fault Tolerance

Nils Müllner (Universität Oldenburg)
• convergence: $\exists t_k : x(t_k) \models P$

• closure: $\forall t \geq t_k : x(t_k) \models P \Rightarrow x(t) \models P$

• attack at convergence: slow or probabilistic

• attack at closure: $\exists t_0 \forall t \geq t_0 : x(t) \models P$
- convergence: $\exists t_k : x(t_k) \models P$

- closure: $\forall t \geq t_k : x(t_k) \models P \Rightarrow x(t) \models P$

- attack at convergence: slow or probabilistic

- attack at closure: $\exists t_0 \forall t \geq t_0 : x(t) \models P$
• convergence: $\exists t_k : x(t_k) \models P$

• closure: $\forall t \geq t_k : x(t_k) \models P \Rightarrow x(t) \models P$

• attack at convergence: slow or probabilistic

• attack at closure: $\exists t_0 \forall t \geq t_0 : x(t) \models P$
• convergence: \(\exists t_k : x(t_k) \models P \)

• closure: \(\forall t \geq t_k : x(t_k) \models P \Rightarrow x(t) \models P \)

• attack at convergence: slow or probabilistic

• attack at closure: \(\exists t_0 \forall t \geq t_0 : x(t) \models P \)
convergence: $\exists t_k : x(t_k) \models P$

closure: $\forall t \geq t_k : x(t_k) \models P \Rightarrow x(t) \models P$

attack at convergence: slow or probabilistic

attack at closure: $\exists t_0 \forall t \geq t_0 : x(t) \models P$
convergence: $\exists t_k : x(t_k) \models P$

closure: $\forall t \geq t_k : x(t_k) \models P \Rightarrow x(t) \models P$

attack at convergence: slow or probabilistic

attack at closure: $\exists t_0 \forall t \geq t_0 : x(t) \models P$
• convergence: $\exists t_k : x(t_k) \models P$

• closure: $\forall t \geq t_k : x(t_k) \models P \Rightarrow x(t) \models P$

• attack at convergence: slow or probabilistic

• attack at closure: $\exists t_0 \forall t \geq t_0 : x(t) \models P$
Bonus: fun with weakening the masking property 3/3

- convergence: \(\exists t_k : x(t_k) \models P \)

- closure: \(\forall t \geq t_k : x(t_k) \models P \Rightarrow x(t) \models P \)

- attack at convergence: slow or probabilistic

- attack at closure: \(\exists t_0 \forall t \geq t_0 : x(t) \models P \)
Figure: slower stabilization

Figure: probabilistic stabilization
Attack Closure

set ofillegal states → set of legal states → set of legal states

Nils Müller (Universität Oldenburg)
Thank your for your attention.

nils.muellner@informatik.uni-oldenburg.de

Questions?
Thank your for your attention.

nils.muellner@informatik.uni-oldenburg.de

Questions?
Thank your for your attention.

nils.muellner@informatik.uni-oldenburg.de

Questions?