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The world of fault tolerance

I Distributed systems are
omnipresent,

I like consumers of a power grid or
I distributed sensors in a car or

airplane.

I A distributed system comprises
processes that can collaborate to
provide a service, like providing
energy or environmental data.

power grid, source: wordpress.com

distributed sensors, source: mathworks.com
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The world of fault tolerance

I The service such a system provides
a) can be critical (hard safety requirements)
⇒ must never fail!

b) or not (soft safety requirements)
⇒ temporary downtimes are acceptable.

I Focus on category b).
Less critical systems that can cope with
temporary invalidation of safety.

I Systems that can recover from the effects of faults
can run indefinitely.
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The world of fault tolerance

I Distributed systems are prone to
sporadic transient faults.

I Such faults occur probabilistically and can
corrupt values stored in processes.

I Other probabilistic influence – like a central
scheduler – might further influence the system.
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Key questions

sporadic fault

recovery

t

safe

unsafe

I How well does such a distributed system
provide its service over time?

I How well does such a distributed system
recover over time?
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Requirements

To answer these questions, we need:

1. a measure to quantify recovery and
2. a method to compute that measure.
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Limiting window availability

. . . is the probability
that a system works according to its specification

(i.e. it is in a safe state)
at least once within a time frame,
considering the stationary as initial distribution.
[SSS2006,ATC2009,WAINA2011]
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Independent limit

Why limiting?

Generally, any arbitrary distribution is applicable.

For indefinitely running systems,
the stationary distribution is the interesting one.
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System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, controlling
a critical intersection.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store arbitrary values.

LabelGuard enabled and s = π1 Command LabelGuard enabled and s = π2 Command
a1 R1 = green ∧R2 = green R1 := red1 a26 R1 = green ∧R2 = green R2 := red1
a2 R1 = green ∧R2 = yellow R1 := red1 a27 R1 = green ∧R2 = yellow R2 := red1
a3 R1 = green ∧R2 = yellow1R1 := red1 a28 R1 = green ∧R2 = yellow1R2 := red1
a4 R1 = yellow ∧R2 = green R1 := red1 a29 R1 = yellow ∧R2 = green R2 := red1
a5 R1 = yellow1∧R2 = green R1 := red1 a30 R1 = yellow1∧R2 = green R2 := red1
a6 R1 = green ∧R2 = red R1 := red a31 R1 = green ∧R2 = red R2 := red1
a7 R1 = green ∧R2 = red1 R1 := yellow1 a32 R1 = green ∧R2 = red1 R2 := red1
a8 R1 = red ∧R2 = green R1 := red1 a33 R1 = red ∧R2 = green R2 := red
a9 R1 = red1 ∧R2 = green R1 := red1 a34 R1 = red1 ∧R2 = green R2 := yellow1
a10 R1 = yellow ∧R2 = yellow R1 := red1 a35 R1 = yellow ∧R2 = yellow R2 := red1
a11 R1 = yellow ∧R2 = yellow1R1 := red1 a36 R1 = yellow ∧R2 = yellow1R2 := red1
a12 R1 = yellow1∧R2 = yellow R1 := red1 a37 R1 = yellow1∧R2 = yellow R2 := red1
a13 R1 = yellow1∧R2 = yellow1R1 := red1 a38 R1 = yellow1∧R2 = yellow1R2 := red1
a14 R1 = yellow ∧R2 = red R1 := red a39 R1 = yellow ∧R2 = red R2 := red1
a15 R1 = yellow1∧R2 = red R1 := red a40 R1 = yellow1∧R2 = red R2 := red1
a16 R1 = yellow ∧R2 = red1 R1 := green a41 R1 = yellow ∧R2 = red1 R2 := red1
a17 R1 = yellow1∧R2 = red1 R1 := red a42 R1 = yellow1∧R2 = red1 R2 := red1
a18 R1 = red ∧R2 = yellow R1 := red1 a43 R1 = red ∧R2 = yellow R2 := red
a19 R1 = red ∧R2 = yellow1R1 := red1 a44 R1 = red ∧R2 = yellow1R2 := red
a20 R1 = red1 ∧R2 = yellow R1 := red1 a45 R1 = red1 ∧R2 = yellow R2 := green
a21 R1 = red1 ∧R2 = yellow1R1 := red1 a46 R1 = red1 ∧R2 = yellow1R2 := red1
a22 R1 = red ∧R2 = red R1 := red1 a47 R1 = red ∧R2 = red R2 := red
a23 R1 = red1 ∧R2 = red R1 := red a48 R1 = red1 ∧R2 = red R2 := yellow
a24 R1 = red ∧R2 = red1 R1 := green a49 R1 = red ∧R2 = red1 R2 := red
a25 R1 = red1 ∧R2 = red1 R1 := yellow a50 R1 = red1 ∧R2 = red1 R2 := green

Table: Traffic lights algorithm –
guarded commands
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From system and environment to computing LWA

deterministic system dynamics

probabilistic environmental influence

transition model LWA
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State space, transition model, safety

I system state st = 〈g, r1〉

I state space
S = {〈g,g〉, 〈g, y〉, . . . , 〈r1, r1〉}

I transition probability
prob(

−−−−−−−−−→
〈g,g〉, 〈g, r1〉)

I (state based) safety:
at least one light shows, r or r1

I partitions state space into legal
and illegal states

g,r1
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Traffic light transition matrix
↓from/to→ g,g g, y g, y1 y ,g y1,g g, r g, r1 r ,g r1,g y , y y , y1 y1, y y1, y1 y , r y1, r y , r1 y1, r1 r , y r , y1 r1, y r1, y1 r , r r1, r r , r1 r1, r1

g,g 2q q q q q q p + q q p + q
g, y q 2q q q p + q q q q p + q
g, y1 q q 2q q p + q q q q p + q
y ,g q 2q q q p + q q q q p + q
y1,g q q 2q q p + q q q q p + q
g, r q q q 2q p + q q q p + q q
g, r1 q q q q p + 2q q p + q q q
r ,g q q q 2q p + q q q p + q q
r1,g q q q q p + 2q q p + q q q
y , y q q 2q q q q p + q q p + q
y , y1 q q q 2q q q p + q q p + q
y1, y q q q 2q q q p + q q p + q
y1, y1 q q q q 2q q p + q q p + q
y , r q q q q 2q q p + q p + q q
y1, r q q q q q 2q p + q p + q q
y , r1 q p + q q q q p + 2q q q q
y1, r1 q q q q q q p + 2q p + q q
r , y q q q q 2q q p + q p + q q
r , y1 q q q q q 2q p + q p + q q
r1, y q p + q q q q p + 2q p q q
r1, y1 q q q q q q p + 2q q p + q
r , r q q q q q q p + 2q p + q q
r1, r q q q q p + q q q p + 2q q
r , r1 q q q q q q p + q p + 2q q
r1, r1 q p + q p + q q q q q q 2q

Table: Transition model D of traffic light example

number of states =
number of possible values to the power of
number of registers to the power of
number of processes

here: 5 values in 1 register for each of 2 traffic lights processes:
|S| = 512

= 25
Nils Müllner Unmasking Fault Tolerance 13/27



Introduction Concept Computation Composition Conclusion Literature

Traffic lights LWA
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State space, transition model, safety

I small two process system for proof of
concept:X

I next step: larger, more complex system,
different algorithm
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System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, like
agreeing on one value.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store wrong values (2).

const id := 0,
var R,
repeat {

R := 0
}.

const neighbors := 〈πi , . . .〉,
const distance
:=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧
(distance(πj ) =distance−1),

var R,
repeat{

¬((∃Ri : πi ∈ set ∧ Ri = 2)xor
∃Ri : πi ∈ set ∧ Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧ Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧ Ri = 2
→ R := 2

}.

Figure: Broadcast algorithm –
self-stabilizing (BASS)
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Broadcast algorithm – self-stabilizing

7 processes, 1 register each, 3 possible values1:
here: |S| = 23 · 34 = 648

1Processes π1 − π3 cannot derive 1.
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LWA Examples
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Concluding LWA

© a measure to quantify recovery
© a method to compute that measure
§ yet, inherently confined by

state space explosion
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Lumping

I The first step in reducing the size of the
state space is lumping.

I Lumping coalesces bisimilar states,
i.e. states that do the same in a
transition model
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Decomposition

I Lumping requires a transition model.
I But a transition model is likely too large to be

constructed at one go.
I Idea: Successive construction of transition model.

I Mutually independent processes⇒ already discussed
[Boudali et al. , 2010, AINA2014]

I Hierarchically structured⇒ challenging, but feasible
[WAINA2011,AINA2012,JCSS2013]
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Tackling state space explosion

I Ideally, tractable system size.

I If not, then slice system.

I Build transition model of
upper sub-system Π1.

I Uncouple gateway process,
i.e.D1 → D1,− ⊗Dπ4 .

I Lump D1,− to D′1,−.

I Build transition model of
lower sub-system Π2.

I Lump D2 to D′2.

I Recompose D′ = D′1,− ⊗D′2.

step 1: uncoupling

step 2: lumping

step 3: 
constructing 

step 4: lumping

step 5: recomposition
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Tackling state space explosion

I No state space larger than 81 states during computation:
I |S| = 648 while |S ′| = 324, and
I only half the states and quarter the transitions!
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Synopsis of decomposition

1. Fault tolerant systems often comprise uniform components
⇒ High potential for lumping.

2. Structured systems are challenging, as propagation
through gateway processes must be accounted for.

3. Self-stabilizing systems often rely on hierarchic structures
and uniform processes to facilitate stabilization.

4. Combining decomposition and lumping can dampen state
space explosion for analysis of self-stabilizing systems.
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Conclusion

I Area of application: non-critical dependable distributed
systems exposed to sporadic transient faults.

I Goal: measure recovery
I Method: transition model analysis
I Challenge: state space explosion
I Solution: efficiently combining lumping and decomposition
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Summarizing achievements

I Recovery is an important attribute to quantify.
I Lumping and decomposition are helpful assets from model

checking,
I but required to be adapted in that matter.
I Methods have been successfully demonstrated on

numerous examples:
I traffic lights,
I broadcast algorithm [AINA2012,JCSS2013],
I power grids [WAINA2014] and
I wireless sensor network [AINA2014].
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