
Unmasking Fault Tolerance
Quantifying deterministic recovery dynamics

in probabilistic environments

Nils Müllner

Fakultät II, Department für Informatik
Carl von Ossietzky Universität Oldenburg

CA RL
VON

OSS I ET Z KY

February 26, 2014

Introduction Concept Computation Composition Conclusion Literature

Agenda

1 Introduction

2 Concept

3 Computation

4 Composition

5 Conclusion

6 Literature

Nils Müllner Unmasking Fault Tolerance 2/27

Introduction Concept Computation Composition Conclusion Literature

The world of fault tolerance

I Distributed systems are
omnipresent,

I like consumers of a power grid or
I distributed sensors in a car or

airplane.

I A distributed system comprises
processes that can collaborate to
provide a service, like providing
energy or environmental data.

power grid, source: wordpress.com

distributed sensors, source: mathworks.com

Nils Müllner Unmasking Fault Tolerance 3/27

Introduction Concept Computation Composition Conclusion Literature

The world of fault tolerance

I Distributed systems are
omnipresent,

I like consumers of a power grid or
I distributed sensors in a car or

airplane.

I A distributed system comprises
processes that can collaborate to
provide a service, like providing
energy or environmental data.

power grid, source: wordpress.com

distributed sensors, source: mathworks.com

Nils Müllner Unmasking Fault Tolerance 3/27

Introduction Concept Computation Composition Conclusion Literature

The world of fault tolerance

I The service such a system provides
a) can be critical (hard safety requirements)
⇒ must never fail!

b) or not (soft safety requirements)
⇒ temporary downtimes are acceptable.

I Focus on category b).
Less critical systems that can cope with
temporary invalidation of safety.

I Systems that can recover from the effects of faults
can run indefinitely.

Nils Müllner Unmasking Fault Tolerance 4/27

Introduction Concept Computation Composition Conclusion Literature

The world of fault tolerance

I The service such a system provides
a) can be critical (hard safety requirements)
⇒ must never fail!

b) or not (soft safety requirements)
⇒ temporary downtimes are acceptable.

I Focus on category b).
Less critical systems that can cope with
temporary invalidation of safety.

I Systems that can recover from the effects of faults
can run indefinitely.

Nils Müllner Unmasking Fault Tolerance 4/27

Introduction Concept Computation Composition Conclusion Literature

The world of fault tolerance

I The service such a system provides
a) can be critical (hard safety requirements)
⇒ must never fail!

b) or not (soft safety requirements)
⇒ temporary downtimes are acceptable.

I Focus on category b).
Less critical systems that can cope with
temporary invalidation of safety.

I Systems that can recover from the effects of faults
can run indefinitely.

Nils Müllner Unmasking Fault Tolerance 4/27

Introduction Concept Computation Composition Conclusion Literature

The world of fault tolerance

I The service such a system provides
a) can be critical (hard safety requirements)
⇒ must never fail!

b) or not (soft safety requirements)
⇒ temporary downtimes are acceptable.

I Focus on category b).
Less critical systems that can cope with
temporary invalidation of safety.

I Systems that can recover from the effects of faults
can run indefinitely.

Nils Müllner Unmasking Fault Tolerance 4/27

Introduction Concept Computation Composition Conclusion Literature

The world of fault tolerance

I Distributed systems are prone to
sporadic transient faults.

I Such faults occur probabilistically and can
corrupt values stored in processes.

I Other probabilistic influence – like a central
scheduler – might further influence the system.

Nils Müllner Unmasking Fault Tolerance 5/27

Introduction Concept Computation Composition Conclusion Literature

The world of fault tolerance

I Distributed systems are prone to
sporadic transient faults.

I Such faults occur probabilistically and can
corrupt values stored in processes.

I Other probabilistic influence – like a central
scheduler – might further influence the system.

Nils Müllner Unmasking Fault Tolerance 5/27

Introduction Concept Computation Composition Conclusion Literature

The world of fault tolerance

I Distributed systems are prone to
sporadic transient faults.

I Such faults occur probabilistically and can
corrupt values stored in processes.

I Other probabilistic influence – like a central
scheduler – might further influence the system.

Nils Müllner Unmasking Fault Tolerance 5/27

Introduction Concept Computation Composition Conclusion Literature

Key questions

sporadic fault

recovery

t

safe

unsafe

I How well does such a distributed system
provide its service over time?

I How well does such a distributed system
recover over time?

Nils Müllner Unmasking Fault Tolerance 6/27

Introduction Concept Computation Composition Conclusion Literature

Requirements

To answer these questions, we need:

1. a measure to quantify recovery and
2. a method to compute that measure.

Nils Müllner Unmasking Fault Tolerance 7/27

Introduction Concept Computation Composition Conclusion Literature

Limiting window availability

. . . is the probability
that a system works according to its specification

(i.e. it is in a safe state)
at least once within a time frame,
considering the stationary as initial distribution.
[SSS2006,ATC2009,WAINA2011]

Nils Müllner Unmasking Fault Tolerance 8/27

Introduction Concept Computation Composition Conclusion Literature

Limiting window availability

. . . is the probability
that a system works according to its specification

(i.e. it is in a safe state)
at least once within a time frame,
considering the stationary as initial distribution.
[SSS2006,ATC2009,WAINA2011]

Nils Müllner Unmasking Fault Tolerance 8/27

Introduction Concept Computation Composition Conclusion Literature

Limiting window availability

. . . is the probability
that a system works according to its specification

(i.e. it is in a safe state)
at least once within a time frame,
considering the stationary as initial distribution.
[SSS2006,ATC2009,WAINA2011]

Nils Müllner Unmasking Fault Tolerance 8/27

Introduction Concept Computation Composition Conclusion Literature

Limiting window availability

. . . is the probability
that a system works according to its specification

(i.e. it is in a safe state)
at least once within a time frame,
considering the stationary as initial distribution.
[SSS2006,ATC2009,WAINA2011]

Nils Müllner Unmasking Fault Tolerance 8/27

Introduction Concept Computation Composition Conclusion Literature

Independent limit

Why limiting?

Generally, any arbitrary distribution is applicable.

For indefinitely running systems,
the stationary distribution is the interesting one.

Nils Müllner Unmasking Fault Tolerance 9/27

Introduction Concept Computation Composition Conclusion Literature

Independent limit

Why limiting?

Generally, any arbitrary distribution is applicable.

For indefinitely running systems,
the stationary distribution is the interesting one.

Nils Müllner Unmasking Fault Tolerance 9/27

Introduction Concept Computation Composition Conclusion Literature

Independent limit

Why limiting?

Generally, any arbitrary distribution is applicable.

For indefinitely running systems,
the stationary distribution is the interesting one.

Nils Müllner Unmasking Fault Tolerance 9/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, controlling
a critical intersection.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store arbitrary values.

LabelGuard enabled and s = π1 Command LabelGuard enabled and s = π2 Command
a1 R1 = green ∧R2 = green R1 := red1 a26 R1 = green ∧R2 = green R2 := red1
a2 R1 = green ∧R2 = yellow R1 := red1 a27 R1 = green ∧R2 = yellow R2 := red1
a3 R1 = green ∧R2 = yellow1R1 := red1 a28 R1 = green ∧R2 = yellow1R2 := red1
a4 R1 = yellow ∧R2 = green R1 := red1 a29 R1 = yellow ∧R2 = green R2 := red1
a5 R1 = yellow1∧R2 = green R1 := red1 a30 R1 = yellow1∧R2 = green R2 := red1
a6 R1 = green ∧R2 = red R1 := red a31 R1 = green ∧R2 = red R2 := red1
a7 R1 = green ∧R2 = red1 R1 := yellow1 a32 R1 = green ∧R2 = red1 R2 := red1
a8 R1 = red ∧R2 = green R1 := red1 a33 R1 = red ∧R2 = green R2 := red
a9 R1 = red1 ∧R2 = green R1 := red1 a34 R1 = red1 ∧R2 = green R2 := yellow1
a10 R1 = yellow ∧R2 = yellow R1 := red1 a35 R1 = yellow ∧R2 = yellow R2 := red1
a11 R1 = yellow ∧R2 = yellow1R1 := red1 a36 R1 = yellow ∧R2 = yellow1R2 := red1
a12 R1 = yellow1∧R2 = yellow R1 := red1 a37 R1 = yellow1∧R2 = yellow R2 := red1
a13 R1 = yellow1∧R2 = yellow1R1 := red1 a38 R1 = yellow1∧R2 = yellow1R2 := red1
a14 R1 = yellow ∧R2 = red R1 := red a39 R1 = yellow ∧R2 = red R2 := red1
a15 R1 = yellow1∧R2 = red R1 := red a40 R1 = yellow1∧R2 = red R2 := red1
a16 R1 = yellow ∧R2 = red1 R1 := green a41 R1 = yellow ∧R2 = red1 R2 := red1
a17 R1 = yellow1∧R2 = red1 R1 := red a42 R1 = yellow1∧R2 = red1 R2 := red1
a18 R1 = red ∧R2 = yellow R1 := red1 a43 R1 = red ∧R2 = yellow R2 := red
a19 R1 = red ∧R2 = yellow1R1 := red1 a44 R1 = red ∧R2 = yellow1R2 := red
a20 R1 = red1 ∧R2 = yellow R1 := red1 a45 R1 = red1 ∧R2 = yellow R2 := green
a21 R1 = red1 ∧R2 = yellow1R1 := red1 a46 R1 = red1 ∧R2 = yellow1R2 := red1
a22 R1 = red ∧R2 = red R1 := red1 a47 R1 = red ∧R2 = red R2 := red
a23 R1 = red1 ∧R2 = red R1 := red a48 R1 = red1 ∧R2 = red R2 := yellow
a24 R1 = red ∧R2 = red1 R1 := green a49 R1 = red ∧R2 = red1 R2 := red
a25 R1 = red1 ∧R2 = red1 R1 := yellow a50 R1 = red1 ∧R2 = red1 R2 := green

Table: Traffic lights algorithm –
guarded commands

Nils Müllner Unmasking Fault Tolerance 10/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, controlling
a critical intersection.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store arbitrary values.

LabelGuard enabled and s = π1 Command LabelGuard enabled and s = π2 Command
a1 R1 = green ∧R2 = green R1 := red1 a26 R1 = green ∧R2 = green R2 := red1
a2 R1 = green ∧R2 = yellow R1 := red1 a27 R1 = green ∧R2 = yellow R2 := red1
a3 R1 = green ∧R2 = yellow1R1 := red1 a28 R1 = green ∧R2 = yellow1R2 := red1
a4 R1 = yellow ∧R2 = green R1 := red1 a29 R1 = yellow ∧R2 = green R2 := red1
a5 R1 = yellow1∧R2 = green R1 := red1 a30 R1 = yellow1∧R2 = green R2 := red1
a6 R1 = green ∧R2 = red R1 := red a31 R1 = green ∧R2 = red R2 := red1
a7 R1 = green ∧R2 = red1 R1 := yellow1 a32 R1 = green ∧R2 = red1 R2 := red1
a8 R1 = red ∧R2 = green R1 := red1 a33 R1 = red ∧R2 = green R2 := red
a9 R1 = red1 ∧R2 = green R1 := red1 a34 R1 = red1 ∧R2 = green R2 := yellow1
a10 R1 = yellow ∧R2 = yellow R1 := red1 a35 R1 = yellow ∧R2 = yellow R2 := red1
a11 R1 = yellow ∧R2 = yellow1R1 := red1 a36 R1 = yellow ∧R2 = yellow1R2 := red1
a12 R1 = yellow1∧R2 = yellow R1 := red1 a37 R1 = yellow1∧R2 = yellow R2 := red1
a13 R1 = yellow1∧R2 = yellow1R1 := red1 a38 R1 = yellow1∧R2 = yellow1R2 := red1
a14 R1 = yellow ∧R2 = red R1 := red a39 R1 = yellow ∧R2 = red R2 := red1
a15 R1 = yellow1∧R2 = red R1 := red a40 R1 = yellow1∧R2 = red R2 := red1
a16 R1 = yellow ∧R2 = red1 R1 := green a41 R1 = yellow ∧R2 = red1 R2 := red1
a17 R1 = yellow1∧R2 = red1 R1 := red a42 R1 = yellow1∧R2 = red1 R2 := red1
a18 R1 = red ∧R2 = yellow R1 := red1 a43 R1 = red ∧R2 = yellow R2 := red
a19 R1 = red ∧R2 = yellow1R1 := red1 a44 R1 = red ∧R2 = yellow1R2 := red
a20 R1 = red1 ∧R2 = yellow R1 := red1 a45 R1 = red1 ∧R2 = yellow R2 := green
a21 R1 = red1 ∧R2 = yellow1R1 := red1 a46 R1 = red1 ∧R2 = yellow1R2 := red1
a22 R1 = red ∧R2 = red R1 := red1 a47 R1 = red ∧R2 = red R2 := red
a23 R1 = red1 ∧R2 = red R1 := red a48 R1 = red1 ∧R2 = red R2 := yellow
a24 R1 = red ∧R2 = red1 R1 := green a49 R1 = red ∧R2 = red1 R2 := red
a25 R1 = red1 ∧R2 = red1 R1 := yellow a50 R1 = red1 ∧R2 = red1 R2 := green

Table: Traffic lights algorithm –
guarded commands

Nils Müllner Unmasking Fault Tolerance 10/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, controlling
a critical intersection.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store arbitrary values.

LabelGuard enabled and s = π1 Command LabelGuard enabled and s = π2 Command
a1 R1 = green ∧R2 = green R1 := red1 a26 R1 = green ∧R2 = green R2 := red1
a2 R1 = green ∧R2 = yellow R1 := red1 a27 R1 = green ∧R2 = yellow R2 := red1
a3 R1 = green ∧R2 = yellow1R1 := red1 a28 R1 = green ∧R2 = yellow1R2 := red1
a4 R1 = yellow ∧R2 = green R1 := red1 a29 R1 = yellow ∧R2 = green R2 := red1
a5 R1 = yellow1∧R2 = green R1 := red1 a30 R1 = yellow1∧R2 = green R2 := red1
a6 R1 = green ∧R2 = red R1 := red a31 R1 = green ∧R2 = red R2 := red1
a7 R1 = green ∧R2 = red1 R1 := yellow1 a32 R1 = green ∧R2 = red1 R2 := red1
a8 R1 = red ∧R2 = green R1 := red1 a33 R1 = red ∧R2 = green R2 := red
a9 R1 = red1 ∧R2 = green R1 := red1 a34 R1 = red1 ∧R2 = green R2 := yellow1
a10 R1 = yellow ∧R2 = yellow R1 := red1 a35 R1 = yellow ∧R2 = yellow R2 := red1
a11 R1 = yellow ∧R2 = yellow1R1 := red1 a36 R1 = yellow ∧R2 = yellow1R2 := red1
a12 R1 = yellow1∧R2 = yellow R1 := red1 a37 R1 = yellow1∧R2 = yellow R2 := red1
a13 R1 = yellow1∧R2 = yellow1R1 := red1 a38 R1 = yellow1∧R2 = yellow1R2 := red1
a14 R1 = yellow ∧R2 = red R1 := red a39 R1 = yellow ∧R2 = red R2 := red1
a15 R1 = yellow1∧R2 = red R1 := red a40 R1 = yellow1∧R2 = red R2 := red1
a16 R1 = yellow ∧R2 = red1 R1 := green a41 R1 = yellow ∧R2 = red1 R2 := red1
a17 R1 = yellow1∧R2 = red1 R1 := red a42 R1 = yellow1∧R2 = red1 R2 := red1
a18 R1 = red ∧R2 = yellow R1 := red1 a43 R1 = red ∧R2 = yellow R2 := red
a19 R1 = red ∧R2 = yellow1R1 := red1 a44 R1 = red ∧R2 = yellow1R2 := red
a20 R1 = red1 ∧R2 = yellow R1 := red1 a45 R1 = red1 ∧R2 = yellow R2 := green
a21 R1 = red1 ∧R2 = yellow1R1 := red1 a46 R1 = red1 ∧R2 = yellow1R2 := red1
a22 R1 = red ∧R2 = red R1 := red1 a47 R1 = red ∧R2 = red R2 := red
a23 R1 = red1 ∧R2 = red R1 := red a48 R1 = red1 ∧R2 = red R2 := yellow
a24 R1 = red ∧R2 = red1 R1 := green a49 R1 = red ∧R2 = red1 R2 := red
a25 R1 = red1 ∧R2 = red1 R1 := yellow a50 R1 = red1 ∧R2 = red1 R2 := green

Table: Traffic lights algorithm –
guarded commands

Nils Müllner Unmasking Fault Tolerance 10/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, controlling
a critical intersection.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store arbitrary values.

LabelGuard enabled and s = π1 Command LabelGuard enabled and s = π2 Command
a1 R1 = green ∧R2 = green R1 := red1 a26 R1 = green ∧R2 = green R2 := red1
a2 R1 = green ∧R2 = yellow R1 := red1 a27 R1 = green ∧R2 = yellow R2 := red1
a3 R1 = green ∧R2 = yellow1R1 := red1 a28 R1 = green ∧R2 = yellow1R2 := red1
a4 R1 = yellow ∧R2 = green R1 := red1 a29 R1 = yellow ∧R2 = green R2 := red1
a5 R1 = yellow1∧R2 = green R1 := red1 a30 R1 = yellow1∧R2 = green R2 := red1
a6 R1 = green ∧R2 = red R1 := red a31 R1 = green ∧R2 = red R2 := red1
a7 R1 = green ∧R2 = red1 R1 := yellow1 a32 R1 = green ∧R2 = red1 R2 := red1
a8 R1 = red ∧R2 = green R1 := red1 a33 R1 = red ∧R2 = green R2 := red
a9 R1 = red1 ∧R2 = green R1 := red1 a34 R1 = red1 ∧R2 = green R2 := yellow1
a10 R1 = yellow ∧R2 = yellow R1 := red1 a35 R1 = yellow ∧R2 = yellow R2 := red1
a11 R1 = yellow ∧R2 = yellow1R1 := red1 a36 R1 = yellow ∧R2 = yellow1R2 := red1
a12 R1 = yellow1∧R2 = yellow R1 := red1 a37 R1 = yellow1∧R2 = yellow R2 := red1
a13 R1 = yellow1∧R2 = yellow1R1 := red1 a38 R1 = yellow1∧R2 = yellow1R2 := red1
a14 R1 = yellow ∧R2 = red R1 := red a39 R1 = yellow ∧R2 = red R2 := red1
a15 R1 = yellow1∧R2 = red R1 := red a40 R1 = yellow1∧R2 = red R2 := red1
a16 R1 = yellow ∧R2 = red1 R1 := green a41 R1 = yellow ∧R2 = red1 R2 := red1
a17 R1 = yellow1∧R2 = red1 R1 := red a42 R1 = yellow1∧R2 = red1 R2 := red1
a18 R1 = red ∧R2 = yellow R1 := red1 a43 R1 = red ∧R2 = yellow R2 := red
a19 R1 = red ∧R2 = yellow1R1 := red1 a44 R1 = red ∧R2 = yellow1R2 := red
a20 R1 = red1 ∧R2 = yellow R1 := red1 a45 R1 = red1 ∧R2 = yellow R2 := green
a21 R1 = red1 ∧R2 = yellow1R1 := red1 a46 R1 = red1 ∧R2 = yellow1R2 := red1
a22 R1 = red ∧R2 = red R1 := red1 a47 R1 = red ∧R2 = red R2 := red
a23 R1 = red1 ∧R2 = red R1 := red a48 R1 = red1 ∧R2 = red R2 := yellow
a24 R1 = red ∧R2 = red1 R1 := green a49 R1 = red ∧R2 = red1 R2 := red
a25 R1 = red1 ∧R2 = red1 R1 := yellow a50 R1 = red1 ∧R2 = red1 R2 := green

Table: Traffic lights algorithm –
guarded commands

Nils Müllner Unmasking Fault Tolerance 10/27

Introduction Concept Computation Composition Conclusion Literature

From system and environment to computing LWA

deterministic system dynamics

probabilistic environmental influence

transition model LWA

Nils Müllner Unmasking Fault Tolerance 11/27

Introduction Concept Computation Composition Conclusion Literature

From system and environment to computing LWA

deterministic system dynamics

probabilistic environmental influence

transition model LWA

Nils Müllner Unmasking Fault Tolerance 11/27

Introduction Concept Computation Composition Conclusion Literature

From system and environment to computing LWA

deterministic system dynamics

probabilistic environmental influence

transition model LWA

Nils Müllner Unmasking Fault Tolerance 11/27

Introduction Concept Computation Composition Conclusion Literature

From system and environment to computing LWA

deterministic system dynamics

probabilistic environmental influence

transition model LWA

Nils Müllner Unmasking Fault Tolerance 11/27

Introduction Concept Computation Composition Conclusion Literature

State space, transition model, safety

I system state st = 〈g, r1〉

I state space
S = {〈g,g〉, 〈g, y〉, . . . , 〈r1, r1〉}

I transition probability
prob(

−−−−−−−−−→
〈g,g〉, 〈g, r1〉)

I (state based) safety:
at least one light shows, r or r1

I partitions state space into legal
and illegal states

g,r1

Nils Müllner Unmasking Fault Tolerance 12/27

Introduction Concept Computation Composition Conclusion Literature

State space, transition model, safety

I system state st = 〈g, r1〉

I state space
S = {〈g,g〉, 〈g, y〉, . . . , 〈r1, r1〉}

I transition probability
prob(

−−−−−−−−−→
〈g,g〉, 〈g, r1〉)

I (state based) safety:
at least one light shows, r or r1

I partitions state space into legal
and illegal states

g,g g,y g,y
1 g,r g,r1 y,y y,y

1

y,g y
1
,g r,g r

1
,g y

1
,y y1,y1

y,r y
1
,r r,y r,y

1 r,r r
1
,r

y,r
1 y1,r1 r

1
,y r1,y1 r,r

1 r1,r1

Nils Müllner Unmasking Fault Tolerance 12/27

Introduction Concept Computation Composition Conclusion Literature

State space, transition model, safety

I system state st = 〈g, r1〉

I state space
S = {〈g,g〉, 〈g, y〉, . . . , 〈r1, r1〉}

I transition probability
prob(

−−−−−−−−−→
〈g,g〉, 〈g, r1〉)

I (state based) safety:
at least one light shows, r or r1

I partitions state space into legal
and illegal states

g,g g,y g,y
1 g,r g,r1 y,y y,y

1

y,g y
1
,g r,g r

1
,g y

1
,y y1,y1

y,r y
1
,r r,y r,y

1 r,r r
1
,r

y,r
1 y1,r1 r

1
,y r1,y1 r,r

1 r1,r1

Nils Müllner Unmasking Fault Tolerance 12/27

Introduction Concept Computation Composition Conclusion Literature

State space, transition model, safety

I system state st = 〈g, r1〉

I state space
S = {〈g,g〉, 〈g, y〉, . . . , 〈r1, r1〉}

I transition probability
prob(

−−−−−−−−−→
〈g,g〉, 〈g, r1〉)

I (state based) safety:
at least one light shows, r or r1

I partitions state space into legal
and illegal states

g,g g,y g,y
1 g,r g,r1 y,y y,y

1

y,g y
1
,g r,g r

1
,g y

1
,y y1,y1

y,r y
1
,r r,y r,y

1 r,r r
1
,r

y,r
1 y1,r1 r

1
,y r1,y1 r,r

1 r1,r1

Nils Müllner Unmasking Fault Tolerance 12/27

Introduction Concept Computation Composition Conclusion Literature

State space, transition model, safety

I system state st = 〈g, r1〉

I state space
S = {〈g,g〉, 〈g, y〉, . . . , 〈r1, r1〉}

I transition probability
prob(

−−−−−−−−−→
〈g,g〉, 〈g, r1〉)

I (state based) safety:
at least one light shows, r or r1

I partitions state space into legal
and illegal states

g,g g,y g,y
1 g,r g,r1 y,y y,y

1

y,g y
1
,g r,g r

1
,g y

1
,y y1,y1

y,r y
1
,r r,y r,y

1 r,r r
1
,r

y,r
1 y1,r1 r

1
,y r1,y1 r,r

1 r1,r1

Nils Müllner Unmasking Fault Tolerance 12/27

Introduction Concept Computation Composition Conclusion Literature

Traffic light transition matrix
↓from/to→ g,g g, y g, y1 y ,g y1,g g, r g, r1 r ,g r1,g y , y y , y1 y1, y y1, y1 y , r y1, r y , r1 y1, r1 r , y r , y1 r1, y r1, y1 r , r r1, r r , r1 r1, r1

g,g 2q q q q q q p + q q p + q
g, y q 2q q q p + q q q q p + q
g, y1 q q 2q q p + q q q q p + q
y ,g q 2q q q p + q q q q p + q
y1,g q q 2q q p + q q q q p + q
g, r q q q 2q p + q q q p + q q
g, r1 q q q q p + 2q q p + q q q
r ,g q q q 2q p + q q q p + q q
r1,g q q q q p + 2q q p + q q q
y , y q q 2q q q q p + q q p + q
y , y1 q q q 2q q q p + q q p + q
y1, y q q q 2q q q p + q q p + q
y1, y1 q q q q 2q q p + q q p + q
y , r q q q q 2q q p + q p + q q
y1, r q q q q q 2q p + q p + q q
y , r1 q p + q q q q p + 2q q q q
y1, r1 q q q q q q p + 2q p + q q
r , y q q q q 2q q p + q p + q q
r , y1 q q q q q 2q p + q p + q q
r1, y q p + q q q q p + 2q p q q
r1, y1 q q q q q q p + 2q q p + q
r , r q q q q q q p + 2q p + q q
r1, r q q q q p + q q q p + 2q q
r , r1 q q q q q q p + q p + 2q q
r1, r1 q p + q p + q q q q q q 2q

Table: Transition model D of traffic light example

number of states =
number of possible values to the power of
number of registers to the power of
number of processes

here: 5 values in 1 register for each of 2 traffic lights processes:
|S| = 512

= 25
Nils Müllner Unmasking Fault Tolerance 13/27

Introduction Concept Computation Composition Conclusion Literature

Traffic lights LWA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0,94

0,95

0,96

0,97

0,98

0,99

1,00

LimitingdWindowdAvailabilitydfordTLA Example

L
im

it
in

g
W

in
d

ow
A

va
il

ab
il

it
y

5 10 15 20 25
0

2

4

6

8

10Probability

State

TimedStep

0.1

0.05

0

TimeStep

Nils Müllner Unmasking Fault Tolerance 14/27

Introduction Concept Computation Composition Conclusion Literature

State space, transition model, safety

I small two process system for proof of
concept:X

I next step: larger, more complex system,
different algorithm

Nils Müllner Unmasking Fault Tolerance 15/27

Introduction Concept Computation Composition Conclusion Literature

State space, transition model, safety

I small two process system for proof of
concept:X

I next step: larger, more complex system,
different algorithm

Nils Müllner Unmasking Fault Tolerance 15/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, like
agreeing on one value.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store wrong values (2).

const id := 0,
var R,
repeat {

R := 0
}.

const neighbors := 〈πi , . . .〉,
const distance
:=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧
(distance(πj) =distance−1),

var R,
repeat{

¬((∃Ri : πi ∈ set ∧ Ri = 2)xor
∃Ri : πi ∈ set ∧ Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧ Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧ Ri = 2
→ R := 2

}.

Figure: Broadcast algorithm –
self-stabilizing (BASS)

Nils Müllner Unmasking Fault Tolerance 16/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, like
agreeing on one value.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store wrong values (2).

const id := 0,
var R,
repeat {

R := 0
}.

const neighbors := 〈πi , . . .〉,
const distance
:=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧
(distance(πj) =distance−1),

var R,
repeat{

¬((∃Ri : πi ∈ set ∧ Ri = 2)xor
∃Ri : πi ∈ set ∧ Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧ Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧ Ri = 2
→ R := 2

}.

Figure: Broadcast algorithm –
self-stabilizing (BASS)

Nils Müllner Unmasking Fault Tolerance 16/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, like
agreeing on one value.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store wrong values (2).

const id := 0,
var R,
repeat {

R := 0
}.

const neighbors := 〈πi , . . .〉,
const distance
:=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧
(distance(πj) =distance−1),

var R,
repeat{

¬((∃Ri : πi ∈ set ∧ Ri = 2)xor
∃Ri : πi ∈ set ∧ Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧ Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧ Ri = 2
→ R := 2

}.

Figure: Broadcast algorithm –
self-stabilizing (BASS)

Nils Müllner Unmasking Fault Tolerance 16/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, like
agreeing on one value.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store wrong values (2).

let's store
the value 0

const id := 0,
var R,
repeat {

R := 0
}.

const neighbors := 〈πi , . . .〉,
const distance
:=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧
(distance(πj) =distance−1),

var R,
repeat{

¬((∃Ri : πi ∈ set ∧ Ri = 2)xor
∃Ri : πi ∈ set ∧ Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧ Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧ Ri = 2
→ R := 2

}.

Figure: Broadcast algorithm –
self-stabilizing (BASS)

Nils Müllner Unmasking Fault Tolerance 16/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, like
agreeing on one value.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store wrong values (2).

copy that

0

copy that

const id := 0,
var R,
repeat {

R := 0
}.

const neighbors := 〈πi , . . .〉,
const distance
:=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧
(distance(πj) =distance−1),

var R,
repeat{

¬((∃Ri : πi ∈ set ∧ Ri = 2)xor
∃Ri : πi ∈ set ∧ Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧ Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧ Ri = 2
→ R := 2

}.

Figure: Broadcast algorithm –
self-stabilizing (BASS)

Nils Müllner Unmasking Fault Tolerance 16/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, like
agreeing on one value.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store wrong values (2).

0

0

0
reading equal values

const id := 0,
var R,
repeat {

R := 0
}.

const neighbors := 〈πi , . . .〉,
const distance
:=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧
(distance(πj) =distance−1),

var R,
repeat{

¬((∃Ri : πi ∈ set ∧ Ri = 2)xor
∃Ri : πi ∈ set ∧ Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧ Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧ Ri = 2
→ R := 2

}.

Figure: Broadcast algorithm –
self-stabilizing (BASS)

Nils Müllner Unmasking Fault Tolerance 16/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, like
agreeing on one value.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store wrong values (2).

0

0

0

0

I read you

I read you, too

const id := 0,
var R,
repeat {

R := 0
}.

const neighbors := 〈πi , . . .〉,
const distance
:=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧
(distance(πj) =distance−1),

var R,
repeat{

¬((∃Ri : πi ∈ set ∧ Ri = 2)xor
∃Ri : πi ∈ set ∧ Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧ Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧ Ri = 2
→ R := 2

}.

Figure: Broadcast algorithm –
self-stabilizing (BASS)

Nils Müllner Unmasking Fault Tolerance 16/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, like
agreeing on one value.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store wrong values (2).

0

0

0

0

eventually
0

0

const id := 0,
var R,
repeat {

R := 0
}.

const neighbors := 〈πi , . . .〉,
const distance
:=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧
(distance(πj) =distance−1),

var R,
repeat{

¬((∃Ri : πi ∈ set ∧ Ri = 2)xor
∃Ri : πi ∈ set ∧ Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧ Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧ Ri = 2
→ R := 2

}.

Figure: Broadcast algorithm –
self-stabilizing (BASS)

Nils Müllner Unmasking Fault Tolerance 16/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, like
agreeing on one value.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store wrong values (2).

0

sporadic fault

0

0 0

0

0

const id := 0,
var R,
repeat {

R := 0
}.

const neighbors := 〈πi , . . .〉,
const distance
:=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧
(distance(πj) =distance−1),

var R,
repeat{

¬((∃Ri : πi ∈ set ∧ Ri = 2)xor
∃Ri : πi ∈ set ∧ Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧ Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧ Ri = 2
→ R := 2

}.

Figure: Broadcast algorithm –
self-stabilizing (BASS)

Nils Müllner Unmasking Fault Tolerance 16/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, like
agreeing on one value.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store wrong values (2).

0 2

0

0

0

0

copy that

const id := 0,
var R,
repeat {

R := 0
}.

const neighbors := 〈πi , . . .〉,
const distance
:=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧
(distance(πj) =distance−1),

var R,
repeat{

¬((∃Ri : πi ∈ set ∧ Ri = 2)xor
∃Ri : πi ∈ set ∧ Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧ Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧ Ri = 2
→ R := 2

}.

Figure: Broadcast algorithm –
self-stabilizing (BASS)

Nils Müllner Unmasking Fault Tolerance 16/27

Introduction Concept Computation Composition Conclusion Literature

System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, like
agreeing on one value.

An algorithm contains both
functional and recovery
instructions.

Sporadic faults let executing
processes store wrong values (2).

0 2

2
undetermined

0

0

0

1

const id := 0,
var R,
repeat {

R := 0
}.

const neighbors := 〈πi , . . .〉,
const distance
:=min(distance(neighbors))+1,
const set := 〈Rj , . . .〉|∀πj :

(πj ∈ neighbors)∧
(distance(πj) =distance−1),

var R,
repeat{

¬((∃Ri : πi ∈ set ∧ Ri = 2)xor
∃Ri : πi ∈ set ∧ Ri = 0))
→ R := 1;

2∃Ri : πi ∈ set ∧ Ri = 0
→ R := 0;

2∃Ri : πi ∈ set ∧ Ri = 2
→ R := 2

}.

Figure: Broadcast algorithm –
self-stabilizing (BASS)

Nils Müllner Unmasking Fault Tolerance 16/27

Introduction Concept Computation Composition Conclusion Literature

Broadcast algorithm – self-stabilizing

7 processes, 1 register each, 3 possible values1:
here: |S| = 23 · 34 = 648

1Processes π1 − π3 cannot derive 1.
Nils Müllner Unmasking Fault Tolerance 17/27

Introduction Concept Computation Composition Conclusion Literature

Broadcast algorithm – self-stabilizing

State (Target)

S
ta

te
 (

O
ri

gi
n

)

100 200 300 400 500 600

100

200

300

400

500

600
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

7 processes, 1 register each, 3 possible values1:
here: |S| = 23 · 34 = 648

1Processes π1 − π3 cannot derive 1.
Nils Müllner Unmasking Fault Tolerance 17/27

Introduction Concept Computation Composition Conclusion Literature

Broadcast algorithm – self-stabilizing

State (Target)

S
ta

te
 (

O
ri

gi
n

)

100 200 300 400 500 600

100

200

300

400

500

600

7 processes, 1 register each, 3 possible values1:
here: |S| = 23 · 34 = 648

1Processes π1 − π3 cannot derive 1.
Nils Müllner Unmasking Fault Tolerance 17/27

Introduction Concept Computation Composition Conclusion Literature

LWA Examples

Time Window

L
im

it
in

g
W

in
d

ow
 A

va
il

ab
il

it
y

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Nils Müllner Unmasking Fault Tolerance 18/27

Introduction Concept Computation Composition Conclusion Literature

Concluding LWA

© a measure to quantify recovery
© a method to compute that measure
§ yet, inherently confined by

state space explosion

Nils Müllner Unmasking Fault Tolerance 19/27

Introduction Concept Computation Composition Conclusion Literature

Lumping

I The first step in reducing the size of the
state space is lumping.

I Lumping coalesces bisimilar states,
i.e. states that do the same in a
transition model

00 22

02

20

2200

0.2

0.2

0.3

0.3

0.5

0.5

0.2
0.5

0.3

becomes

Nils Müllner Unmasking Fault Tolerance 20/27

Introduction Concept Computation Composition Conclusion Literature

Decomposition

I Lumping requires a transition model.
I But a transition model is likely too large to be

constructed at one go.
I Idea: Successive construction of transition model.

I Mutually independent processes⇒ already discussed
[Boudali et al. , 2010, AINA2014]

I Hierarchically structured⇒ challenging, but feasible
[WAINA2011,AINA2012,JCSS2013]

Nils Müllner Unmasking Fault Tolerance 21/27

Introduction Concept Computation Composition Conclusion Literature

Decomposition

I Lumping requires a transition model.
I But a transition model is likely too large to be

constructed at one go.
I Idea: Successive construction of transition model.

I Mutually independent processes⇒ already discussed
[Boudali et al. , 2010, AINA2014]

I Hierarchically structured⇒ challenging, but feasible
[WAINA2011,AINA2012,JCSS2013]

Nils Müllner Unmasking Fault Tolerance 21/27

Introduction Concept Computation Composition Conclusion Literature

Decomposition

I Lumping requires a transition model.
I But a transition model is likely too large to be

constructed at one go.
I Idea: Successive construction of transition model.

I Mutually independent processes⇒ already discussed
[Boudali et al. , 2010, AINA2014]

I Hierarchically structured⇒ challenging, but feasible
[WAINA2011,AINA2012,JCSS2013]

Nils Müllner Unmasking Fault Tolerance 21/27

Introduction Concept Computation Composition Conclusion Literature

Decomposition

I Lumping requires a transition model.
I But a transition model is likely too large to be

constructed at one go.
I Idea: Successive construction of transition model.

I Mutually independent processes⇒ already discussed
[Boudali et al. , 2010, AINA2014]

I Hierarchically structured⇒ challenging, but feasible
[WAINA2011,AINA2012,JCSS2013]

Nils Müllner Unmasking Fault Tolerance 21/27

Introduction Concept Computation Composition Conclusion Literature

Decomposition

I Lumping requires a transition model.
I But a transition model is likely too large to be

constructed at one go.
I Idea: Successive construction of transition model.

I Mutually independent processes⇒ already discussed
[Boudali et al. , 2010, AINA2014]

I Hierarchically structured⇒ challenging, but feasible
[WAINA2011,AINA2012,JCSS2013]

Nils Müllner Unmasking Fault Tolerance 21/27

Introduction Concept Computation Composition Conclusion Literature

Tackling state space explosion

I Ideally, tractable system size.

I If not, then slice system.

I Build transition model of
upper sub-system Π1.

I Uncouple gateway process,
i.e.D1 → D1,− ⊗Dπ4 .

I Lump D1,− to D′1,−.

I Build transition model of
lower sub-system Π2.

I Lump D2 to D′2.

I Recompose D′ = D′1,− ⊗D′2.

step 1: uncoupling

step 2: lumping

step 3:
constructing

step 4: lumping

step 5: recomposition

Nils Müllner Unmasking Fault Tolerance 22/27

Introduction Concept Computation Composition Conclusion Literature

Tackling state space explosion

I Ideally, tractable system size.

I If not, then slice system.

I Build transition model of
upper sub-system Π1.

I Uncouple gateway process,
i.e.D1 → D1,− ⊗Dπ4 .

I Lump D1,− to D′1,−.

I Build transition model of
lower sub-system Π2.

I Lump D2 to D′2.

I Recompose D′ = D′1,− ⊗D′2.

step 1: uncoupling

step 2: lumping

step 3:
constructing

step 4: lumping

step 5: recomposition

Nils Müllner Unmasking Fault Tolerance 22/27

Introduction Concept Computation Composition Conclusion Literature

Tackling state space explosion

I Ideally, tractable system size.

I If not, then slice system.

I Build transition model of
upper sub-system Π1.

I Uncouple gateway process,
i.e.D1 → D1,− ⊗Dπ4 .

I Lump D1,− to D′1,−.

I Build transition model of
lower sub-system Π2.

I Lump D2 to D′2.

I Recompose D′ = D′1,− ⊗D′2.

step 1: uncoupling

step 2: lumping

step 3:
constructing

step 4: lumping

step 5: recomposition

Nils Müllner Unmasking Fault Tolerance 22/27

Introduction Concept Computation Composition Conclusion Literature

Tackling state space explosion

I Ideally, tractable system size.

I If not, then slice system.

I Build transition model of
upper sub-system Π1.

I Uncouple gateway process,
i.e.D1 → D1,− ⊗Dπ4 .

I Lump D1,− to D′1,−.

I Build transition model of
lower sub-system Π2.

I Lump D2 to D′2.

I Recompose D′ = D′1,− ⊗D′2.

step 1: uncoupling

step 2: lumping

step 3:
constructing

step 4: lumping

step 5: recomposition

{ {becomes becomes

Nils Müllner Unmasking Fault Tolerance 22/27

Introduction Concept Computation Composition Conclusion Literature

Tackling state space explosion

I Ideally, tractable system size.

I If not, then slice system.

I Build transition model of
upper sub-system Π1.

I Uncouple gateway process,
i.e.D1 → D1,− ⊗Dπ4 .

I Lump D1,− to D′1,−.

I Build transition model of
lower sub-system Π2.

I Lump D2 to D′2.

I Recompose D′ = D′1,− ⊗D′2.

step 1: uncoupling

step 2: lumping

step 3:
constructing

step 4: lumping

step 5: recomposition

{becomes

Nils Müllner Unmasking Fault Tolerance 22/27

Introduction Concept Computation Composition Conclusion Literature

Tackling state space explosion

I Ideally, tractable system size.

I If not, then slice system.

I Build transition model of
upper sub-system Π1.

I Uncouple gateway process,
i.e.D1 → D1,− ⊗Dπ4 .

I Lump D1,− to D′1,−.

I Build transition model of
lower sub-system Π2.

I Lump D2 to D′2.

I Recompose D′ = D′1,− ⊗D′2.

step 1: uncoupling

step 2: lumping

step 3:
constructing

step 4: lumping

step 5: recomposition

{becomes

Nils Müllner Unmasking Fault Tolerance 22/27

Introduction Concept Computation Composition Conclusion Literature

Tackling state space explosion

I Ideally, tractable system size.

I If not, then slice system.

I Build transition model of
upper sub-system Π1.

I Uncouple gateway process,
i.e.D1 → D1,− ⊗Dπ4 .

I Lump D1,− to D′1,−.

I Build transition model of
lower sub-system Π2.

I Lump D2 to D′2.

I Recompose D′ = D′1,− ⊗D′2.

step 1: uncoupling

step 2: lumping

step 3:
constructing

step 4: lumping

step 5: recomposition

{becomes

Nils Müllner Unmasking Fault Tolerance 22/27

Introduction Concept Computation Composition Conclusion Literature

Tackling state space explosion

I Ideally, tractable system size.

I If not, then slice system.

I Build transition model of
upper sub-system Π1.

I Uncouple gateway process,
i.e.D1 → D1,− ⊗Dπ4 .

I Lump D1,− to D′1,−.

I Build transition model of
lower sub-system Π2.

I Lump D2 to D′2.

I Recompose D′ = D′1,− ⊗D′2.

step 1: uncoupling

step 2: lumping

step 3:
constructing

step 4: lumping

step 5: recomposition

{becomes

Nils Müllner Unmasking Fault Tolerance 22/27

Introduction Concept Computation Composition Conclusion Literature

Tackling state space explosion

I No state space larger than 81 states during computation:
I |S| = 648 while |S ′| = 324, and
I only half the states and quarter the transitions!

Nils Müllner Unmasking Fault Tolerance 22/27

Introduction Concept Computation Composition Conclusion Literature

Synopsis of decomposition

1. Fault tolerant systems often comprise uniform components
⇒ High potential for lumping.

2. Structured systems are challenging, as propagation
through gateway processes must be accounted for.

3. Self-stabilizing systems often rely on hierarchic structures
and uniform processes to facilitate stabilization.

4. Combining decomposition and lumping can dampen state
space explosion for analysis of self-stabilizing systems.

Nils Müllner Unmasking Fault Tolerance 23/27

Introduction Concept Computation Composition Conclusion Literature

Synopsis of decomposition

1. Fault tolerant systems often comprise uniform components
⇒ High potential for lumping.

2. Structured systems are challenging, as propagation
through gateway processes must be accounted for.

3. Self-stabilizing systems often rely on hierarchic structures
and uniform processes to facilitate stabilization.

4. Combining decomposition and lumping can dampen state
space explosion for analysis of self-stabilizing systems.

Nils Müllner Unmasking Fault Tolerance 23/27

Introduction Concept Computation Composition Conclusion Literature

Synopsis of decomposition

1. Fault tolerant systems often comprise uniform components
⇒ High potential for lumping.

2. Structured systems are challenging, as propagation
through gateway processes must be accounted for.

3. Self-stabilizing systems often rely on hierarchic structures
and uniform processes to facilitate stabilization.

4. Combining decomposition and lumping can dampen state
space explosion for analysis of self-stabilizing systems.

Nils Müllner Unmasking Fault Tolerance 23/27

Introduction Concept Computation Composition Conclusion Literature

Synopsis of decomposition

1. Fault tolerant systems often comprise uniform components
⇒ High potential for lumping.

2. Structured systems are challenging, as propagation
through gateway processes must be accounted for.

3. Self-stabilizing systems often rely on hierarchic structures
and uniform processes to facilitate stabilization.

4. Combining decomposition and lumping can dampen state
space explosion for analysis of self-stabilizing systems.

Nils Müllner Unmasking Fault Tolerance 23/27

Introduction Concept Computation Composition Conclusion Literature

Conclusion

I Area of application: non-critical dependable distributed
systems exposed to sporadic transient faults.

I Goal: measure recovery
I Method: transition model analysis
I Challenge: state space explosion
I Solution: efficiently combining lumping and decomposition

Nils Müllner Unmasking Fault Tolerance 24/27

Introduction Concept Computation Composition Conclusion Literature

Conclusion

I Area of application: non-critical dependable distributed
systems exposed to sporadic transient faults.

I Goal: measure recovery
I Method: transition model analysis
I Challenge: state space explosion
I Solution: efficiently combining lumping and decomposition

Nils Müllner Unmasking Fault Tolerance 24/27

Introduction Concept Computation Composition Conclusion Literature

Conclusion

I Area of application: non-critical dependable distributed
systems exposed to sporadic transient faults.

I Goal: measure recovery
I Method: transition model analysis
I Challenge: state space explosion
I Solution: efficiently combining lumping and decomposition

Nils Müllner Unmasking Fault Tolerance 24/27

Introduction Concept Computation Composition Conclusion Literature

Conclusion

I Area of application: non-critical dependable distributed
systems exposed to sporadic transient faults.

I Goal: measure recovery
I Method: transition model analysis
I Challenge: state space explosion
I Solution: efficiently combining lumping and decomposition

Nils Müllner Unmasking Fault Tolerance 24/27

Introduction Concept Computation Composition Conclusion Literature

Conclusion

I Area of application: non-critical dependable distributed
systems exposed to sporadic transient faults.

I Goal: measure recovery
I Method: transition model analysis
I Challenge: state space explosion
I Solution: efficiently combining lumping and decomposition

Nils Müllner Unmasking Fault Tolerance 24/27

Introduction Concept Computation Composition Conclusion Literature

Summarizing achievements

I Recovery is an important attribute to quantify.
I Lumping and decomposition are helpful assets from model

checking,
I but required to be adapted in that matter.
I Methods have been successfully demonstrated on

numerous examples:
I traffic lights,
I broadcast algorithm [AINA2012,JCSS2013],
I power grids [WAINA2014] and
I wireless sensor network [AINA2014].

Nils Müllner Unmasking Fault Tolerance 25/27

Introduction Concept Computation Composition Conclusion Literature

Summarizing achievements

I Recovery is an important attribute to quantify.
I Lumping and decomposition are helpful assets from model

checking,
I but required to be adapted in that matter.
I Methods have been successfully demonstrated on

numerous examples:
I traffic lights,
I broadcast algorithm [AINA2012,JCSS2013],
I power grids [WAINA2014] and
I wireless sensor network [AINA2014].

Nils Müllner Unmasking Fault Tolerance 25/27

Introduction Concept Computation Composition Conclusion Literature

Summarizing achievements

I Recovery is an important attribute to quantify.
I Lumping and decomposition are helpful assets from model

checking,
I but required to be adapted in that matter.
I Methods have been successfully demonstrated on

numerous examples:
I traffic lights,
I broadcast algorithm [AINA2012,JCSS2013],
I power grids [WAINA2014] and
I wireless sensor network [AINA2014].

Nils Müllner Unmasking Fault Tolerance 25/27

Introduction Concept Computation Composition Conclusion Literature

Summarizing achievements

I Recovery is an important attribute to quantify.
I Lumping and decomposition are helpful assets from model

checking,
I but required to be adapted in that matter.
I Methods have been successfully demonstrated on

numerous examples:
I traffic lights,
I broadcast algorithm [AINA2012,JCSS2013],
I power grids [WAINA2014] and
I wireless sensor network [AINA2014].

Nils Müllner Unmasking Fault Tolerance 25/27

Introduction Concept Computation Composition Conclusion Literature

Own publications

AnSS2008 Nils Müllner, Abhishek Dhama, and Oliver Theel.
Derivation of Fault Tolerance Measures of Self-
Stabilizing Algorithms by Simulation. In Proceed-
ings of the 41st Annual Symposium on Simula-
tion (AnSS2008), pages 183 – 192, Ottawa, ON,
Canada, April 2008. IEEE Computer Society Press.

ATC2009 Nils Müllner, Abhishek Dhama, and Oliver Theel.
Deriving a Good Trade-off Between System Avail-
ability and Time Redundancy. In Proceedings of the
Symposia and Workshops on Ubiquitous, Automatic
and Trusted Computing, number E3737 in Track "In-
ternational Symposium on UbiCom Frontiers - Inno-
vative Research, Systems and Technologies (Ufirst-
09)", pages 61 – 67, Brisbane, QLD, Australia, July
2009. IEEE Computer Society Press.

WAINA2011 Nils Müllner and Oliver Theel. The Degree of Mask-
ing Fault Tolerance vs. Temporal Redundancy. In
Proceedings of the 25th IEEE of the International
Conference on Advanced Information Networking
and Applications Workshops (WAINA2011), Track
"The Seventh International Symposium on Frontiers
of Information Systems and Network Applications
(FINA2011)", pages 21 – 28, Biopolis, Singapore,
2011. IEEE Computer Society Press.

AINA2012 Nils Müllner, Oliver Theel, and Martin Fränzle. Com-
bining Decomposition and Reduction for State Space
Analysis of a Self-Stabilizing System. In Proceed-
ings of the 26th IEEE International Conference
on Advanced Information Networking and Applica-
tions (AINA2012), pages 936 – 943, Fukuoka-shi,
Fukuoka, Japan, March 2012. IEEE Computer So-
ciety Press. Best Paper Award.

JCSS2013 Nils Müllner, Oliver Theel, and Martin Fränzle. Com-
bining Decomposition and Reduction for the State
Space Analysis of Self-Stabilizing Systems. In Jour-
nal of Computer and System Sciences (JCSS), vol-
ume 79, pages 1113 – 1125. Elsevier Science Pub-
lishers B. V., November 2013. The paper is an ex-
tended version of AINA2012.

IREP2013 Maryam Kamgarpour, Christian Ellen, Sadegh Es-
maeil Zadeh Soudjani, Sebastian Gerwinn, Johanna
L. Mathieux, Nils Müllner, Alessandro Abate, Duncan
S. Callaway, Martin Fränzle, and John Lygeros. Mod-
eling Options for Demand Side Participation of Ther-
mostatically Controlled Loads. In Proceedings of the
IREP Symposium-Bulk Power System Dynamics and
Control -IX (IREP), August 25-30, 2013, Rethymnon,
Greece, 2013.

AINA2014 Nils Müllner, Oliver Theel, and Martin Fränzle.
Combining Decomposition and Lumping to Evaluate
Semi-hierarchical Systems. In Proceedings of the
28th IEEE International Conference on Advanced In-
formation Networking and Applications (AINA2014),
Victoria, BC, Canada, 2014. accepted for publica-
tion.

WAINA2014 Nils Müllner, Oliver Theel, and Martin Fränzle. Com-
posing Thermostatically Controlled Loads to Deter-
mine the Reliability against Blackouts. In Proceed-
ings of the 28th IEEE International Conference on
Advanced Information Networking and Applications
Workshops (WAINA 2014), Victoria, BC, Canada,
2014. accepted for publication.

Nils Müllner Unmasking Fault Tolerance 26/27

Introduction Concept Computation Composition Conclusion Literature

Questions?

Nils Müllner Unmasking Fault Tolerance 27/27

Introduction Concept Computation Composition Conclusion Literature

SSS2006 Abhishek Dhama, Oliver Theel, and Timo Warns.
Reliability and Availability Analysis of Self-Stabilizing
Systems. In Proceedings of the Eighth International
Conference on Stabilization, Safety, and Security of
Distributed Systems (SSS2006), pages 244 – 261,
2006.

Boudali et al. , 2010 Hichem Boudali, Pepijn Crouzen, and Mariëlle
Stoelinga. A Rigorous, Compositional, and Exten-
sible Framework for Dynamic Fault Tree Analysis.
IEEE Trans. Dependable Sec. Comput., 7(2):128
– 143, 2010.

Nils Müllner Unmasking Fault Tolerance 27/27

