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The world of fault tolerance

» Distributed systems are
omnipresent,
» like consumers of a power grid or
» distributed sensors in a car or
airplane.

distributed sensors, source: mathworks.com
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The world of fault tolerance

» Distributed systems are
omnipresent,

» like consumers of a power grid or
» distributed sensors in a car or
airplane.

» A distributed system comprises
processes that can collaborate to
provide a service, like providing
energy or environmental data.

distributed sensors, source: mathworks.com
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The world of fault tolerance

» The service such a system provides
a) can be critical (hard safety requirements)

b) or not (soft safety requirements)
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The world of fault tolerance

» The service such a system provides
a) can be critical (hard safety requirements)
= must never fail!
b) or not (soft safety requirements)
= temporary downtimes are acceptable.
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The world of fault tolerance

Conclusion Literature

» The service such a system provides
a) can be critical (hard safety requirements)
= must never fail!
b) or not (soft safety requirements)
= temporary downtimes are acceptable.
» Focus on category b).
Less critical systems that can cope with
temporary invalidation of safety.
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The world of fault tolerance

» The service such a system provides
a) can be critical (hard safety requirements)
= must never fail!
b) or not (soft safety requirements)
= temporary downtimes are acceptable.
» Focus on category b).
Less critical systems that can cope with
temporary invalidation of safety.

» Systems that can recover from the effects of faults
can run indefinitely.
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The world of fault tolerance

» Distributed systems are prone to
sporadic transient faults.
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The world of fault tolerance

» Distributed systems are prone to
sporadic transient faults.

» Such faults occur probabilistically and can
corrupt values stored in processes.
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The world of fault tolerance

» Distributed systems are prone to
sporadic transient faults.

» Such faults occur probabilistically and can
corrupt values stored in processes.

» Other probabilistic influence — like a central
scheduler — might further influence the system.
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Key questions

sporadic fault

A A

safe
recove
unsafe

>
>

| :

» How well does such a distributed system
provide its service over time?

» How well does such a distributed system
recover over time?
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Requirements

To answer these questions, we need:

1. a measure to quantify recovery and
2. a method to compute that measure.
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leltlng window avallablllty

. is the probability
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Limiting window availability

... is the probability
that a system works according to its specification
(i.e.itis in a safe state)
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Limiting window availability

... is the probability

that a system works according to its specification
(i.e.itis in a safe state)

at least once within a time frame,

Nils Mdillner Unmasking Fault Tolerance




Concept
[o] le]e} O

Limiting window availability

... is the probability

that a system works according to its specification
(i.e.itis in a safe state)

at least once within a time frame,

considering the stationary as initial distribution.

Nils Mdillner Unmasking Fault Tolerance
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Independent limit

Why limiting?
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Independent limit

Why limiting?

Generally, any arbitrary distribution is applicable.
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Independent limit

Why limiting?

Generally, any arbitrary distribution is applicable.

For indefinitely running systems,
the stationary distribution is the interesting one.
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System model and sporadic faults

A distributed system comprises @ @
processes taking serial execution

steps.
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System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to
achieve common goal, controlling
a critical intersection.

Nils Miillner Unmasking Fault Tolerance
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System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

abelGuard enabled and s = 7y [Command abelGuard enabled and s = r, [Command

[ar__|Ri = green ARp = green |Ry = red; lazs_|R1 = green ARp = green |R, = red,

laz  |R: = green AR, — By == red; laer |Ri = green ARy = R = red;

. las_|Ri = green AR, — R = red lazs [P = green AR, = Rs = red

Processes can communicate to s R e 1o AT P greon [y o0,
ls_|Ri = ARy = green |Ry = red, laso |R1 = AR, = green |Rp := red;

. H lae_ |Ri=green ARp=red |Ri:=red las1 [P = green AR, —red  |R, = red.
achieve common goal, controlling Erfrmrepm—tr s m
e . h las_|Ri=red AR = green |Ry = red; lass |Ri—red AR, — green |R, = red

las_|Ri—red, AR, = green lass [P = red; AR, = green R =

a critical intersection. R T S S T
i R = ARy = lass Ry = AR, — Rz == red;

laiz R = ARy = laar |Ri = ARy = Ro = red;

e [Ri= ARy = lass R — AR, — R, = red;

. . a; R = ARy = red lass R = ARy = red [R> := red.

An algorithm contains both s = TP, = 1o o = TPy = g [Py = red:
lais [R1 = AR, = red; lass R = ARy = red [R> = red,

. la;z R = AR, = red. laz R = ARy = red; |R, = red.
functional and recovery T e o T T
. . o | =red AR, = las |Ri=red AR = R = red
lzo |Ry=red; ARp = lass |Ri=red;, ARp = R .= green

instructions. R T S T
lazz [Ri=red AR, =red lasz [Riy =red ARy = red R: red
laxs |R1 =red; AR =red lass |1 =red; ARp=red |Rp:=

laza [Ry =red  ARp = red; lasg |y =red ARp =red; [Rp:=red
lass |Ri = red; ARp = red; laso |Ri = red; ARy =red; |R,:= green

Table: Traffic lights algorithm —
guarded commands
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System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

abelGuard enabled and s = 7y [Command -abelGuard enabled and s = 7, [Command
[ar__|Ri = green ARp = green |Ry = red; lazs_|R1 = green ARp = green |R, = red,
laz  |R: = green AR, — By = red; laer |Ri = green ARy = R = red;
. laa |Ri = green AR, = Ry = red; lazs [R1 = green AR = Ro = red
Processes can communicate to os 1P = o7 Ay = groon =129\ Jos [P = =goon [y = 100
ls_|Ri = AR, = green |Ry = red; laso |R1 = ARp = green |Rp := red;
H H lae_ |Ri=green ARp=red |Ri:=red lass |Ri=green ARp=red |R, := red.
achieve common goal, controllin e R e e
b
- . . las  [Ri = red ARp = green |Ry := red; lass [Ri = red ARy = green |Rp := red
|R: = red. ARy = IRy = red |Ry = red Ry = Ry =
a critical intersection. T RS IoaY T e EN Y T e
lary Ry = ARy = Ry = red; lass |Ri = ARy = Ro = red;
laiz R = ARy = IR = red; laar |Ri = AR = Ro = red;
s |Ri = ARy = Ry = red; lass_|R1 = ARy = Ro = red;
. . laie R = ARy = red _|Ry = red las A1 = ARy = red _|Rp = red,
An algorithm contains both s A= 107 ARy = o0 = rod e A= Tor AR = ea iy = 1o
las [R1 = AR, = red; [R: := green lass R = ARy = red [R> = red,
H la Ry = ARy = red Ry = red lase |Ri = ARy = red IR, = red.
functional and recovery T e e Y I
. . lag |Ri=red AR, — Ry == red; las |Ri=red AR = R = red
la: [Ry = red ARy = Ry := red lass [Ry = red ARy = Rz := green
instructions. T T e T
laze [Ry = red ARy = red Ry = red, lasz |Ry = red ARy = red [ red
lazs |Ri=red; ARp=red |Ry :=red lass |Ri=red; ARp=red |Rp:=
lazs [Ry = red ARy =red; |Ry :=green [las [Ry = red ARy = red. Ro = red
laes |Ri=red; ARp=reds |R = laso |Ri =red; AR, =red, |R.:=green

Sporadic faults let executing

processes store arbitrary values. ~ Table: Traffic lights algorithm —
guarded commands

g Fault Tol [}
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From system and environment to computing

deterministic system dynamics
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From system and environment to computing

robabilistic environmental influence
deterministic system dynamics
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From system and environment to computing

robabilistic environmental influence
deterministic system dynamics

transition model
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From system and environment to computing

robabilistic environmental influence
deterministic system dynamics

transition model
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State space transition model,

» system state sy = (g, ry)
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State space, transition model,

» system state sy = (g, ry)

» State space
S={(9,9),(9,V),-...{r,r)}
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State space transmon model, safet

» system state sy = (g, ry)

» State space
S={(9,9),(9,V),-...{r,r)}

» transition probability
prob({g, 9),(9, 1))
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State space transmon model, safet

» system state sy = (g, ry)

» State space
S={(9,9),(9,V),-...{r,r)}

» transition probability
prob((g, 9, (9. 71))

» (state based) safety:
at least one light shows, r or r;
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State space, transition model, safet

v

system state sy = (g, ry)

v

state space
S={(9,9),(9,V),-...{r,r)}

transition probability
prob((g, 9, (9. 71))

v

(state based) safety:
at least one light shows, r or r;

v

» partitions state space into
and states

Nils Mdillner Unmasking Fault Tolerance
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Trafflc light transmon matrix

]

Table: Transition model D of traffic light example

number of states =

number of possible values to the power of

number of registers to the power of

number of processes
here: 51\2/alues in 1 register for each of 2 traffic lights processes:
|S| =5" =25

Nils Mdillner Unmasking Fault Tolerance
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Traffic lights LWA

000e00000

" State 0 %
Limiting Window Availability for TLA Example
1,00
0,99 4
0,98 I

1 2 3 4 5 6 9 10 11 12 13 14 15 16 17

7 8
TimeStep

Limiting Window Availability
R 2 3
\\\
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State space, transition model, safet

» small two process system for proof of
concept:v’
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State space, transition model, safet

» small two process system for proof of
concept:v’

» next step: larger, more complex system,
different algorithm
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System model and sporadic faults

9

A distributed system comprises
processes taking serial execution @

@3
steps. @3
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System model and sporadic faults

A distributed system comprises @ @

processes taking serial execution .@.@
steps. T3) T6)

Processes can communicate to
achieve common goal, like
agreeing on one value.
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System model and sporadic faults

A distributed system comprises @ @

processes taking serial execution .@.@
steps. T3) T6)

Processes can communicate to

achieve common goal, like gggg_;gie;gahnb;rs - L
agreeing on one value. o ance(neighbors)) 1.
(m; € neighbors)/A
constid :=0, (distance(r;) =distance—1),
. . var R, var R,
An algorithm contains both repeat repeat(

. R:=0 =((3R; : m € set A Rj = 2)xor
functional and recovery ) S € sel A A= 0)
instructions. O3, 7 < et A =0

O3dR; :mieset AR =2
—R:=2
)

Figure: Broadcast algorithm —
self-stabilizing (BASS)
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System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

let's store

Processes can communicate to the value 0
achieve common goal, like i
agreeing on one value. o anea(nelghibors))
(m; € neighbors)/A
constid =0, (distance(r;) =distance—1),
N . var R, var R,
An algorithm contains both repsat | ropeat]

. R:=0 =((3R; : m € set A Rj = 2)xor
functional and recovery ) R set A= 0)
instructions. O3, 7 < et A =0

O3JR;:mesetANR =2
—R:==2
).

Figure: Broadcast algorithm —
self-stabilizing (BASS)

Nils Mdillner Unmasking Fault Tolerance
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System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to copy that
achieve common goal, like cortaatbors (1)
agreeing on one value. i istance(nelghbers))
(m; € neighbors)/A
constid := 0, (distance(r;) =distance—1),
. . var R, var R,
An algorithm contains both repeat repeat(

. R:=0 =((3R; : m € set A Rj = 2)xor
functional and recovery ) R set A= 0)
inStFUCtionS. ETRﬁ';isoet AR =0

O3dR; :mieset AR =2
—R:=2
}.

Figure: Broadcast algorithm —
self-stabilizing (BASS)
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Computation sitio Conclusion Literature

0O0000e000

System model and sporadic faults

reading equal values

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to

achieve common goal, like i
agreeing on one value. o anes(neighibors) 1
(m; € neighbors)A
constid :=0, (distance(r;) =distance—1),
. . var R, var R,
An algorithm contains both repeat { repeat]

. R:=0 =((3R; : m € set A Rj = 2)xor
functional and recovery ! R set A= 0)
instructions. O3 m < ool A =0

O3dR; :mieset AR =2
—+R:=2
).

Figure: Broadcast algorithm —
self-stabilizing (BASS)

Nils Mdillner Unmasking Fault Tolerance



Computation sitio Conclusion Literature

0O0000e000

System model and sporadic faults

I read you

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to I read you, too
achieve common goal, like gggg_;gie;gahnb;rs - L
agreeing on one value. ;(:;p;‘::{::z;fﬁ_e_'ﬁ:;;'ffs»“’
Wi € nel ors)/\
constid :=0, (distancg(nj) :r)iistance—1 ),
. . var R, var R,
An algorithm contains both repeat repeat(

. R:=0 =((3R; : m € set A Rj = 2)xor
functional and recovery ) R set A= 0)
instructions. O3A, < SOL Ay =0

O3JR;:mesetANR =2
—R:=2
).

Figure: Broadcast algorithm —
self-stabilizing (BASS)

Nils Mdillner Unmasking Fault Tolerance



Computation sitio Conclusion Literature

0O0000e000

System model and sporadic faults

eventually

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to

achieve common goal, like gggg_;gie;gahnb;rs - L
agreeing on one value. o ance(neighbors)) 1.
(mj € neighbdrs)/\
constid :=0, (distance(r;) =distance—1),
. . var R, var R,
An algorithm contains both repeat repeat(

. R:=0 =((3R; : m € set A Rj = 2)xor
functional and recovery ) R set A= 0)
instructions. O3A, < SOL Ay =0

O3JR;:mesetANR =2
—R:=2
)

Figure: Broadcast algorithm —
self-stabilizing (BASS)

Nils Mdillner Unmasking Fault Tolerance
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System model and sporadic faults

sporadic fault

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to

achie\_/e common goal, like gggg_ggie;g;nb;rs - L
agreeing on one value. ;T,(Ts'?‘s?f.‘_iz;‘,7?.'5{32";“”*"
Wi € nel ors)/\
constid :=0, (distancg(nj) =distance—1),
N . var R, var R,
An algorithm contains both ropeat { ropoati
. R:=0 ((3R; : mi € set A Rj = 2)xor
functional and recovery ) I € set A A= 0))
instructions. O3, m < SOt Ay =0
O3dR; :miesetAR =2
—R:=2
).

Sporadic faults let executing

processes store wrong values (2).  Figure: Broadcast algorithm —
self-stabilizing (BASS)

Nils Mdillner Unmasking Fault Tolerance
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System model and sporadic faults

copy that

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to

achie\_/e common goal, like i
agreeing on one value. ;T,(Ts'?‘s?f.‘_iz;‘,7?.'5{32";“”*"
j € Nel ors) A\
constid :=0, (distancg(nj) =distance—1),
N . var R, var R,
An algorithm contains both repeat repeat(

. R:=0 ((3R; : mi € set A Rj = 2)xor
functional and recovery ! A set A= 0)
instructions. O3, 7 < et A =0

OJR;:mesetANR =2
—+R:=2
).

Sporadic faults let executing

processes store wrong values (2).  Figure: Broadcast algorithm —
self-stabilizing (BASS)

Nils Mdillner Unmasking Fault Tolerance
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System model and sporadic faults

A distributed system comprises
processes taking serial execution
steps.

Processes can communicate to

achieve common goal, like constneighbors i~ (r...)
agreeing on one value. ol ance(nelgnbors)) 1.
(rr < neighbore)r
constid := 0, (distance(r;) =distance—1),
N . var R, var R,
An algorithm contains both repeat repeat(

H R:=0 ((3R; : m € set A Ry = 2)xor
functional and recovery ! SR set Ay =0)
instructions. O3, < et A =0

O3dR; :miesetAR =2
—R:=2
).

Sporadic faults let executing

processes store wrong values (2).  Figure: Broadcast algorithm —
self-stabilizing (BASS)

Nils Mdillner Unmasking Fault Tolerance



Intr Computation S| > sio Literature
[e]e 000000800 ) O

Broadcast algorithm — self-stabilizing

7 processes, 1 register each, 3 possible values':
here: |S| = 2% .3% = 648

"Processes 71 — 3 cannot derive
Nils Mdillner Unmasking Fault Tolerance
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100 200 300 400 500 600
State (Target)

7 processes, 1 register each, 3 possible values':
here: |S| = 2% .3% = 648

"Processes 71 — w3 cannot derive 1.
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Broadcast algorithm — self-stabilizing

100 200 300 400 500 600
State (Target)
7 processes, 1 register each, 3 possible values':
here: |S| = 2% .3% = 648

"Processes 7y — 3 cannot derive 1.
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Concludlng LWA

0O0000000e

© a measure to quantify recovery
© a method to compute that measure

© yet, inherently confined by
state space explosion

Nils Mdillner Unmasking Fault Tolerance
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Lumping

» The first step in reducing the size of the
state space is lumping.

» Lumping coalesces bisimilar states,
i.e. states that do the same in a
transition model

Nils Mdillner Unmasking Fault Tolerance
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Decomposition

» Lumping requires a transition model.
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Decomposition

» Lumping requires a transition model.

» But a transition model is likely too large to be
constructed at one go.
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Decomposition

» Lumping requires a transition model.
» But a transition model is likely too large to be

constructed at one go.
» ldea: Successive construction of transition model.

Unmasking Fault Tolerance
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Decomposition

» Lumping requires a transition model.
» But a transition model is likely too large to be
constructed at one go.
» Idea: Successive construction of transition model.
» Mutually independent processes = already discussed

Unmasking Fault Tolerance
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Decomposition

» Lumping requires a transition model.
» But a transition model is likely too large to be
constructed at one go.
» Idea: Successive construction of transition model.
» Mutually independent processes = already discussed

» Hierarchically structured = challenging, but feasible

Unmasking Fault Tolerance
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Tackling state space explosion

» Ideally, tractable system size.

Nils Mdillner Unmasking Fault Tolerance
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Tackling state space explosion

» If not, then slice system.
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Tackling state space explosion

» Build transition model of
upper sub-system [14.
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» Uncouple gateway process,
i.e.Dy — Dy~ ® Dn,.

ml, @
e

becomes becomes

1,— Ty

Nils Miillner Unmasking Fault Tolerance
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Tackling state space explosion

61: lumping

» Lump Dy _to D] .

becomes
/
1,—
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Tackling state space explosion

@ e
*« constrcting D,
WIN

» Build transition model of

lower sub-system [. @A@Q

@6

~—

becomes

D,
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Tackling state space explosion

islep 4: lumping

» Lump D, to Dj. @

~—

becomes

D'y
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Tackling state space explosion

» Recompose D' =D _ ® Dj.

becomes

D/

Nils Mdillner Unmasking Fault Tolerance
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Tackling state space explosion

» No state space larger than 81 states during computation:
» |S| = 648 while |S’| = 324, and
» only half the states and quarter the transitions!

Nils Mdillner Unmasking Fault Tolerance
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Synopsis of decompositlon

1. Fault tolerant systems often comprise uniform components
= High potential for lumping.
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Synopsis orfrdecomprbs 6n

1. Fault tolerant systems often comprise uniform components
= High potential for lumping.

2. Structured systems are challenging, as propagation
through gateway processes must be accounted for.
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Synopsis orfrdrecomprbs 6n

1. Fault tolerant systems often comprise uniform components
= High potential for lumping.

2. Structured systems are challenging, as propagation
through gateway processes must be accounted for.

3. Self-stabilizing systems often rely on hierarchic structures
and uniform processes to facilitate stabilization.

4. Combining decomposition and lumping can dampen state
space explosion for analysis of self-stabilizing systems.
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Conclusion

>

Area of application: non-critical dependable distributed
systems exposed to sporadic transient faults.

Goal: measure recovery

>

» Method: transition model analysis
» Challenge: state space explosion
>

Solution: efficiently combining lumping and decomposition
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Summarizing achievements

>

Recovery is an important attribute to quantify.

Lumping and decomposition are helpful assets from model
checking,

but required to be adapted in that matter.

Methods have been successfully demonstrated on
numerous examples:

» traffic lights,

» broadcast algorithm ,

» power grids and

» wireless sensor network

v

vy
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