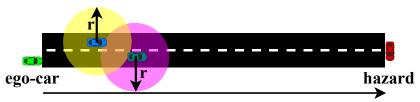
Estimating the Probability of a Timely Traffic-Hazard Warning via Simulation

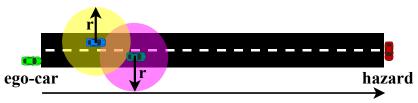
Nils Müllner, Sibylle Fröschle, Martin Fränzle

Interdisciplinary Research Center on Critical Systems Engineering for Socio-Technical Systems

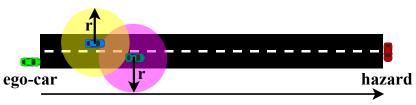
January 12, 2015

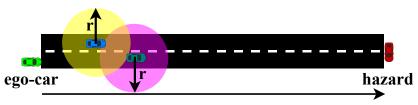

Agenda I

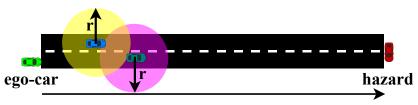
1 Brief Problem Outline


2 Practical Application

3 Conclusion

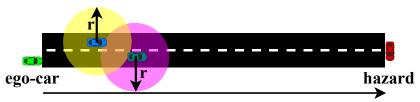

- ► How reliable are hazard warning systems?
- A car approaches a hazard.
- A hazard on its path is a safety threat.
- The threat can only be assessed on close range.
- Cars between ego-car and hazard can propagate a warning.


- ▶ How reliable are hazard warning systems?
- A car approaches a hazard.
- A hazard on its path is a safety threat.
- The threat can only be assessed on close range.
- Cars between ego-car and hazard can propagate a warning.

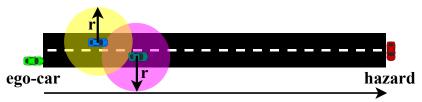

- ▶ How reliable are hazard warning systems?
- A car approaches a hazard.
- A hazard on its path is a safety threat.
- The threat can only be assessed on close range.
- Cars between ego-car and hazard can propagate a warning.

- How reliable are hazard warning systems?
- A car approaches a hazard.
- A hazard on its path is a safety threat.
- The threat can only be assessed on close range.
- Cars between ego-car and hazard can propagate a warning.

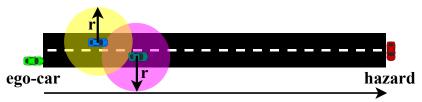
- ▶ How reliable are hazard warning systems?
- A car approaches a hazard.
- A hazard on its path is a safety threat.
- The threat can only be assessed on close range.
- Cars between ego-car and hazard can propagate a warning.

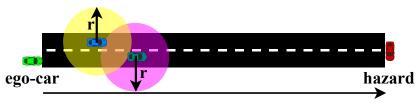

- specify fixed parameters: distance to hazard, velocity of ego car, communication range of cars
- specify dynamic parameters: velocity of other cars, number of other cars
- goal: determine how reliability depends on (dynamic) parameters
- reliability: successful relay of warning message via other cars before ego car reaches safety threshold in front of hazard (i.e. breaking distance)

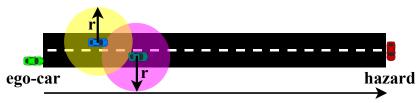
- specify fixed parameters: distance to hazard, velocity of ego car, communication range of cars
- specify dynamic parameters: velocity of other cars, number of other cars
- goal: determine how reliability depends on (dynamic) parameters
- reliability: successful relay of warning message via other cars before ego car reaches safety threshold in front of hazard (i.e. breaking distance)


- specify fixed parameters: distance to hazard, velocity of ego car, communication range of cars
- specify dynamic parameters: velocity of other cars, number of other cars
- goal: determine how reliability depends on (dynamic) parameters
- reliability: successful relay of warning message via other cars before ego car reaches safety threshold in front of hazard (i.e. breaking distance)

- specify fixed parameters: distance to hazard, velocity of ego car, communication range of cars
- specify dynamic parameters: velocity of other cars, number of other cars
- goal: determine how reliability depends on (dynamic) parameters
- reliability: successful relay of warning message via other cars before ego car reaches safety threshold in front of hazard (i.e. breaking distance)


- ▶ How reliable are hazard warning systems?
- A car approaches a hazard.
- A hazard on its path is a safety threat.
- The threat can only be assessed on close range.
- Cars between ego-car and hazard can propagate a warning.


- ▶ How reliable are hazard warning systems?
- A car approaches a hazard.
- A hazard on its path is a safety threat.
- The threat can only be assessed on close range.
- Cars between ego-car and hazard can propagate a warning.


- ▶ How reliable are hazard warning systems?
- A car approaches a hazard.
- A hazard on its path is a safety threat.
- The threat can only be assessed on close range.
- Cars between ego-car and hazard can propagate a warning.

- ▶ How reliable are hazard warning systems?
- A car approaches a hazard.
- A hazard on its path is a safety threat.
- The threat can only be assessed on close range.
- Cars between ego-car and hazard can propagate a warning.

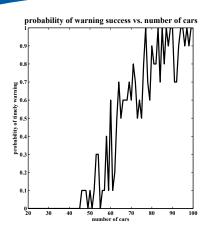
- ▶ How reliable are hazard warning systems?
- A car approaches a hazard.
- A hazard on its path is a safety threat.
- ► The threat can only be assessed on close range.
- Cars between ego-car and hazard can propagate a warning.

- specify fixed parameters: distance to hazard, velocity of ego car, communication range of cars
- specify dynamic parameters: velocity of other cars, number of other cars
- goal: determine how reliability depends on (dynamic) parameters
- reliability: successful relay of warning message via other cars before ego car reaches safety threshold in front of hazard (i.e. breaking distance)

- specify fixed parameters: distance to hazard, velocity of ego car, communication range of cars
- specify dynamic parameters: velocity of other cars, number of other cars
- goal: determine how reliability depends on (dynamic) parameters
- reliability: successful relay of warning message via other cars before ego car reaches safety threshold in front of hazard (i.e. breaking distance)

- specify fixed parameters: distance to hazard, velocity of ego car, communication range of cars
- specify dynamic parameters: velocity of other cars, number of other cars
- goal: determine how reliability depends on (dynamic) parameters
- reliability: successful relay of warning message via other cars before ego car reaches safety threshold in front of hazard (i.e. breaking distance)

- specify fixed parameters: distance to hazard, velocity of ego car, communication range of cars
- specify dynamic parameters: velocity of other cars, number of other cars
- goal: determine how reliability depends on (dynamic) parameters
- reliability: successful relay of warning message via other cars before ego car reaches safety threshold in front of hazard (i.e. breaking distance)


- 1. How many trials are necessary to get resilient results?
- 2. How does the velocity interval of other cars influence the results?
- 3. How does the communication range of cars influence results?
- 4. How does this all scale with the number of cars deployed between ego-car and hazard?

- 1. How many trials are necessary to get resilient results?
- 2. How does the velocity interval of other cars influence the results?
- 3. How does the communication range of cars influence results?
- 4. How does this all scale with the number of cars deployed between ego-car and hazard?

- 1. How many trials are necessary to get resilient results?
- 2. How does the velocity interval of other cars influence the results?
- 3. How does the communication range of cars influence results?
- 4. How does this all scale with the number of cars deployed between ego-car and hazard?

- 1. How many trials are necessary to get resilient results?
- 2. How does the velocity interval of other cars influence the results?
- 3. How does the communication range of cars influence results?
- 4. How does this all scale with the number of cars deployed between ego-car and hazard?

Setting 1: The necessary number of trials

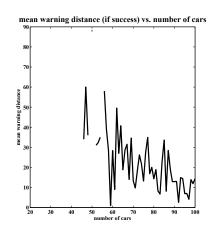
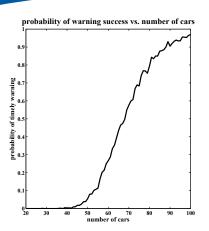



Figure: 10 trials

Setting 1: The necessary number of trials

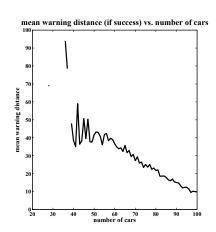
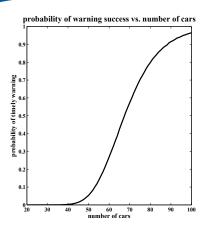



Figure: 1.000 trials

Setting 1: The necessary number of trials

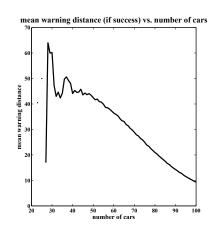
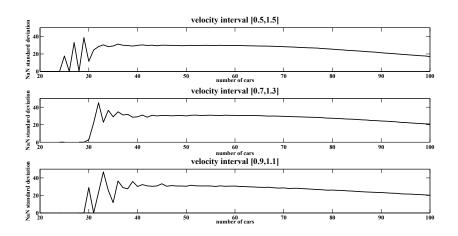
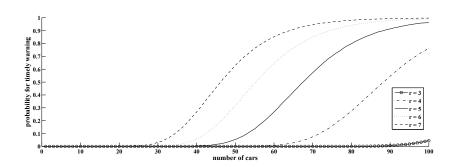




Figure: 100.000 trials

Setting 2: The velocity interval

Setting 3: The communication range

- Number of simulations should not be fixed.
- ▶ The velocity interval has **minor** influence on results
- ► The radio range has major influence on results.
- ► The number of cars need a critical mass based on other parameters for warning mechanisms to be effective.

- Number of simulations should not be fixed.
- ▶ The velocity interval has **minor** influence on results.
- ▶ The radio range has **major** influence on results.
- ► The number of cars need a critical mass based on other parameters for warning mechanisms to be effective.

- Number of simulations should not be fixed.
- The velocity interval has minor influence on results.
- ► The radio range has major influence on results.
- ► The number of cars need a critical mass based on other parameters for warning mechanisms to be effective.

- Number of simulations should not be fixed.
- The velocity interval has minor influence on results.
- ► The radio range has major influence on results.
- The number of cars need a critical mass based on other parameters for warning mechanisms to be effective.

- ▶ Employ Hoeffding to determine number of simulations.
- Switch to SUMO & OMNET++ for better traffic simulation.
- Determine security weak spots caused by unequal distributions (e.g. traffic backlog).
- ▶ Tackle larger and realistic scenarios.

- ▶ Employ Hoeffding to determine number of simulations.
- Switch to SUMO & OMNET++ for better traffic simulation.
- Determine security weak spots caused by unequal distributions (e.g. traffic backlog).
- ▶ Tackle larger and realistic scenarios.

- Employ Hoeffding to determine number of simulations.
- Switch to SUMO & OMNET++ for better traffic simulation.
- Determine security weak spots caused by unequal distributions (e.g. traffic backlog).
- Tackle larger and realistic scenarios

- Employ Hoeffding to determine number of simulations.
- Switch to SUMO & OMNET++ for better traffic simulation.
- Determine security weak spots caused by unequal distributions (e.g. traffic backlog).
- Tackle larger and realistic scenarios.

Questions?