Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Nils Müllner

nils.muellner@informatik.uni-oldenburg.de Abteilung Systemsoftware und verteilte Systeme Department für Informatik Carl von Ossietzky Universität Oldenburg

29. March 2012

Nils Müllner 1/17

outline

- 1 Example
- 2 Decomposition and Reduction: Example
- 3 Computation of Limiting Window Avaiability
- 4 Conclusion

Figure: Root Process

```
const neighbors := \{\pi_i, \ldots\},
const id := \min\{id(\pi_i), \ldots\} + 1.
var reg,
var set := reg_i, \pi(reg_i) \in
   neighbors | \forall i : id(\pi_i) = id - 1 \}
repeat{
\neg((\exists reg_i : \pi(reg_i) \in set \land reg_i = 2)
xor(\exists reg_i : \pi(reg_i) \in set \land reg_i = 0))
       \rightarrow reg := 1
\square \exists reg_i : \pi(reg_i) \in set \land reg_i = \mathbf{0}
       \rightarrow reg :=0
\square \exists reg: \pi(reg:) \in set \land reg: = 2
       \rightarrow reg :=2
```

Figure: Broadcast Sub-Algorithm for Non-Root Processes

```
\frac{\text{const } \textit{id} := 0,}{\text{var } \textit{reg},}
\frac{\textit{repeat}\{}{\textit{reg} := 0\}}
```

Figure: Root Process


```
const neighbors := \{\pi_i, \ldots\},
const id := \min\{id(\pi_i), \ldots\} + 1.
var reg,
var set := reg_i, \pi(reg_i) \in
   neighbors | \forall i : id(\pi_i) = id - 1 \}
repeat{
\neg((\exists reg_i : \pi(reg_i) \in set \land reg_i = 2)
xor(\exists reg_i : \pi(reg_i) \in set \land reg_i = 0))
       \rightarrow reg :=1
\square \exists reg_i : \pi(reg_i) \in set \land reg_i = \mathbf{0}
       \rightarrow reg :=0
\square \exists reg: \pi(reg:) \in set \land reg: = 2
       \rightarrow reg :=2
```

Figure: Broadcast Sub-Algorithm for Non-Root Processes

Figure: Root Process


```
const neighbors := \{\pi_i, \ldots\},
const id := \min\{id(\pi_i), \ldots\} + 1,
var reg,
var set := reg_i, \pi(reg_i) \in
   neighbors | \forall i : id(\pi_i) = id - 1 \}
repeat{
\neg((\exists reg_i : \pi(reg_i) \in set \land reg_i = 2)
xor(\exists reg_i : \pi(reg_i) \in set \land reg_i = 0))
       \rightarrow reg :=1
\square \exists reg_i : \pi(reg_i) \in set \land reg_i = \mathbf{0}
       \rightarrow reg := 0
\square \exists reg_i : \pi(reg_i) \in set \land reg_i = 2
       \rightarrow reg :=2
```

Figure: Broadcast Sub-Algorithm for Non-Root Processes

```
\frac{\text{const } id := 0,}{\text{var } reg,}
\frac{\text{repeat}\{}{reg := 0\}}
```

Figure: Root Process


```
const neighbors := \{\pi_i, \ldots\},
const id := \min\{id(\pi_i), \ldots\} + 1,
var reg,
var set := reg_i, \pi(reg_i) \in
   neighbors | \forall i : id(\pi_i) = id - 1 \}
repeat{
\neg((\exists reg_i : \pi(reg_i) \in set \land reg_i = 2)
xor(\exists reg_i : \pi(reg_i) \in set \land reg_i = 0))
       \rightarrow reg :=1
\square \exists reg_i : \pi(reg_i) \in set \land reg_i = \mathbf{0}
       \rightarrow reg := 0
\square \exists reg_i : \pi(reg_i) \in set \land reg_i = 2
       \rightarrow reg :=2
```

Figure: Broadcast Sub-Algorithm for Non-Root Processes

Figure: Root Process


```
const neighbors := \{\pi_i, \ldots\},
const id := \min\{id(\pi_i), \ldots\} + 1,
var reg,
var set := reg_i, \pi(reg_i) \in
   neighbors | \forall i : id(\pi_i) = id - 1 \}
repeat{
\neg((\exists reg_i : \pi(reg_i) \in set \land reg_i = 2)
xor(\exists reg_i : \pi(reg_i) \in set \land reg_i = 0))
       \rightarrow reg :=1
\square \exists reg_i : \pi(reg_i) \in set \land reg_i = \mathbf{0}
       \rightarrow reg := 0
\square \exists reg: \pi(reg:) \in set \land reg: = 2
       \rightarrow reg :=2
```

Figure: Broadcast Sub-Algorithm for Non-Root Processes

```
\frac{\text{const } id := 0,}{\text{var } reg,}
\frac{\text{repeat}\{}{reg := 0\}}
```

Figure: Root Process


```
const neighbors := \{\pi_i, \ldots\},
const id := \min\{id(\pi_i), \ldots\} + 1,
var reg,
var set := reg_i, \pi(reg_i) \in
   neighbors | \forall i : id(\pi_i) = id - 1 \}
repeat{
\neg((\exists reg_i : \pi(reg_i) \in set \land reg_i = 2)
xor(\exists reg_i : \pi(reg_i) \in set \land reg_i = 0))
       \rightarrow reg :=1
\square \exists reg_i : \pi(reg_i) \in set \land reg_i = \mathbf{0}
       \rightarrow reg := 0
\square \exists reg: \pi(reg:) \in set \land reg: = 2
       \rightarrow reg :=2
```

Figure: Broadcast Sub-Algorithm for Non-Root Processes

```
\frac{\text{const } \textit{id} := 0,}{\text{var } \textit{reg},}
\frac{\textit{repeat}\{}{\textit{reg} := 0\}}
```

Figure: Root Process


```
const neighbors := \{\pi_i, \ldots\},
const id := \min\{id(\pi_i), \ldots\} + 1,
var reg,
var set := reg_i, \pi(reg_i) \in
   neighbors | \forall i : id(\pi_i) = id - 1 \}
repeat{
\neg((\exists reg_i : \pi(reg_i) \in set \land reg_i = 2)
xor(\exists reg_i : \pi(reg_i) \in set \land reg_i = 0))
       \rightarrow reg :=1
\square \exists reg_i : \pi(reg_i) \in set \land reg_i = \mathbf{0}
       \rightarrow reg := 0
\square \exists reg_i : \pi(reg_i) \in set \land reg_i = 2
       \rightarrow reg :=2
```

Figure: Broadcast Sub-Algorithm for Non-Root Processes

```
\frac{\text{const } id := 0,}{\text{var } reg,}
\frac{\text{repeat}\{}{reg := 0\}}
```

Figure: Root Process


```
const neighbors := \{\pi_i, \ldots\},
const id := \min\{id(\pi_i), \ldots\} + 1.
var reg,
var set := reg_i, \pi(reg_i) \in
   neighbors | \forall i : id(\pi_i) = id - 1 \}
repeat{
\neg((\exists reg_i : \pi(reg_i) \in set \land reg_i = 2)
xor(\exists reg_i : \pi(reg_i) \in set \land reg_i = 0))
       \rightarrow reg :=1
\square \exists reg_i : \pi(reg_i) \in set \land reg_i = \mathbf{0}
       \rightarrow reg :=0
\square \exists reg: \pi(reg:) \in set \land reg: = 2
       \rightarrow reg := 2
```

Figure: Broadcast Sub-Algorithm for Non-Root Processes

```
\frac{\text{const } id := 0,}{\text{var } reg,}
\frac{\text{repeat}\{}{reg := 0\}}
```

Figure: Root Process

$$s_t \models \mathcal{P} : reg_1 = 0 \land \ldots \land reg_7 = 0$$

```
const neighbors := \{\pi_i, \ldots\},
const id := \min\{id(\pi_i), \ldots\} + 1,
var reg,
var set := reg_i, \pi(reg_i) \in
   neighbors | \forall i : id(\pi_i) = id - 1 \}
repeat{
\neg((\exists reg_i : \pi(reg_i) \in set \land reg_i = 2)
xor(\exists reg_i : \pi(reg_i) \in set \land reg_i = 0))
       \rightarrow reg :=1
\square \exists reg_i : \pi(reg_i) \in set \land reg_i = \mathbf{0}
       \rightarrow reg :=0
\square \exists reg: \pi(reg:) \in set \land reg: = 2
       \rightarrow reg :=2
```

Figure: Broadcast Sub-Algorithm for Non-Root Processes

Limiting Window Availability

probability, that, from the limit, $s \models \mathcal{P}$ for one step within window

Nils Müllner 4/17

Limiting Window Availability

Definition 1 (Limiting Window Availability (LWA))

Assume that at time t=0, an initial distribution holds that corresponds to the stationary distribution of a system. Then, Limiting Window Availability of window size w (of this system), denoted by LWA_w , $w\geq 0$, is the probability that the system has at least once reached a state satisfying $\mathcal P$ within the following w time steps:

$$LWA_w = prob\{\exists k, 0 \le k \le w : s_k \models \mathcal{P}\}$$

w is called window size.

Trivia

- has 648 states: 2 * 2 * 2 * 3 * 3 * 3 * 3, $\langle 0,0,0,0,0,0,0,0 \rangle, \dots, \langle 2,2,2,2,2,2,2 \rangle$
- probabilistic scheduler
- serial execution semantics (to exclude hazards)
- transient faults q = 0.05
- processes [π_2 with π_3], and [π_5 with π_6], are strongly probabilistic bisimilar
- lumping allows for reduction to 324 states

Plan of Action

ls Müllner 6/17

Plan of Action

Plan of Action

- handling at most 81 state at a time until recomposition
- self-stabilization transforms transition model into a DAG
- exploitable symmetries in heterarchical systems

the Markov chain \mathcal{D} to compute the LWA

\downarrow from/to \rightarrow	$\langle 0,0,0 \rangle$	$\langle 2,0,0 \rangle$	$\langle 0, 2, 0 \rangle$	$\langle 0, 0, 2 \rangle$
$\langle 0,0,0 \rangle$	0.978571	0.007143	0.007143	0.007143
$\langle 2, 0, 0 \rangle$	0.135714	0.578571		
$\langle 0, 2, 0 \rangle$	0.135714		0.850000	
$\langle 0, 0, 2 \rangle$	0.135714			0.850000
$\langle 2, 2, 0 \rangle$			0.135714	
$\langle 2, 0, 2 \rangle$				0.135714
$\langle 0, 2, 2 \rangle$			0.135714	0.135714
\downarrow from/to \rightarrow	$\langle 2, 2, 0 \rangle$	$\langle 2, 0, 2 \rangle$	$\langle 0, 2, 2 \rangle$	$\langle 2, 2, 2 \rangle$
$\langle 2,0,0 \rangle$	0.142857	0.142857		
$\langle 0, 2, 0 \rangle$	0.007143		0.007143	
$\langle 0,0,2 \rangle$		0.007143	0.007143	
$\langle 2, 2, 0 \rangle$	0.721429			0.142857
$\langle 2, 0, 2 \rangle$		0.721429		0.142857
$\langle 0, 2, 2 \rangle$			0.721429	0.007143
$\langle 2,2,2 \rangle$			0.135714	0.864286

Table: $\mathcal{D}_{1,-}$ ($\langle reg_1, reg_2, reg_3 \rangle$)

the Markov chain \mathcal{D} to compute the LWA

\downarrow from/to \rightarrow	$\langle 0,0,0 \rangle$	$\langle 2,0,0 \rangle$	$\langle 0, 1 \rangle$	$\langle 2, 1 \rangle$	$\langle 0, 2, 2 \rangle$	$\langle 2, 2, 2 \rangle$
$\langle 0,0,0 \rangle$	0.9786	0.0071	0.0143			
$\langle 2, 0, 0 \rangle$	0.1357	0.5786		0.2857		
$\langle 0, 1 \rangle$	0.1357		0.8500	0.0071	0.0071	
$\langle 2, 1 \rangle$			0.1357	0.7214		0.1429
$\langle 0, 2, 2 \rangle$			0.2714		0.7214	0.0071
$\langle 2, 2, 2 \rangle$					0.1357	0.8643

Table: $\mathcal{D}'_{1,-}$

the Markov chain \mathcal{D} to compute the LWA

\downarrow from/to \rightarrow	$\langle 0 \rangle$	$\langle 1 \rangle$	⟨2⟩
⟨0⟩	$r_4 = 0.982972$	$s_4 = 0.008687$	$t_4 = 0.008341$
$\langle 1 \rangle$	$u_4 = 0.055813$	$v_4 = 0.930721$	$w_4 = 0.013466$
(2)	$x_4 = 0.081422$	$y_4 = 0.023461$	$z_4 = 0.895117$

Table: \mathcal{D}_{π_4}

recomposition

```
 \begin{array}{c|c} \mathcal{D}' = zeros(324); \\ \text{for } \underline{j=1:6} \text{ do} \\ \hline \\ \hline \text{for } \underline{l=1:54} \text{ do} \\ \hline \\ \hline \text{for } \underline{l=1:54} \text{ do} \\ \hline \\ \hline \text{if } \underline{i \neq \land l \neq k} \text{ then} \\ \hline \\ \hline \\ \mathcal{D}'((j-1) \cdot 54 + l, (i-1) \cdot 54 + l) = \\ \hline \\ \mathcal{D}'_{1,-}((j-1) \cdot 54 + l, (i-1) \cdot 54 + l) + \mathcal{D}'_{1,-}(j,i) \cdot \mathcal{D}'_{2}(l,k) \cdot \frac{3}{7}; \\ \hline \\ \mathcal{D}'((j-1) \cdot 54 + l, (j-1) \cdot 54 + k) = \\ \hline \\ \mathcal{D}'_{1,-}((j-1) \cdot 54 + l, (i-1) \cdot 54 + k) + \mathcal{D}'_{1,-}(j,i) \cdot \mathcal{D}'_{2}(l,k) \cdot \frac{4}{7}; \\ \hline \\ \textbf{else} \\ \hline \\ \hline \\ \mathcal{D}'_{1,-}((j-1) \cdot 54 + l, (i-1) \cdot 54 + k) + \mathcal{D}'_{1,-}(j,i) \cdot \mathcal{D}'_{2}(l,k); \\ \hline \end{array}
```

Figure: Recomposition of $\mathcal{D}'_{1,-}$ and \mathcal{D}'_2 to $\overline{\mathcal{D}'}$

ills Müllner 8/1

recomposition

- matrix multiplication is tricky
- serial execution semantics prohibit Kronecker/Hadamard

Equivalence Class Qualifications

Definition 2

$$s_i \sim s_j :\Leftrightarrow ((s_i \models \mathcal{P} \lor s_j \models \mathcal{P}) \land (s_i \not\models \mathcal{P} \lor s_j \not\models \mathcal{P})) \lor \forall s \in S : prob(s_i, s) = prob(s_j, s)$$

\mathcal{D} Lumping (strongly probabilistic bisimilar)

Definition 3

$$red(\mathcal{D}, \mathcal{P}) = (\mathcal{D}', \mathcal{P}')$$
 (1)

$$\mathcal{D}' = (S_{red}, prob_{red}) \tag{2}$$

$$S_{red} = \{ [s]_{\sim} | s \in S \} \tag{3}$$

$$prob_{red}([s_i]_{\sim},[s_j]_{\sim}) = \sum_{d_i \in [s_i]_{\sim}} prob(d_i,d_j), d_j \in [s_j]_{\sim}$$
 (4)

$$[s]_{\sim} \models \mathcal{P}' : \Leftrightarrow \exists d \in [s]_{\sim} : d \models \mathcal{P}$$
 (5)

ls Müllner 10/17

Theorem 1/2

Theorem 1

$$prob_{red}^{\infty}([s]_{\sim}) = \sum_{d \in [s]_{\sim}} prob^{\infty}(d)$$
 (6)

Proof Part 1

Let $prob^0$ be an arbitrary initial distribution for $\mathcal D$ and let $prob^0_{red}([s]_\sim) = \sum_{s} prob^0(d)$ be an initial distribution for $\mathcal D'$.

Show that for $prob^k$ and $prob^k_{red}$, which are the probability distributions for \mathcal{D} (\mathcal{D}' respectively) at time point k with an initial distribution prob⁰ (prob $_{rod}^{0}$ respectively) the following holds:

$$\forall k : prob_{red}^{k}([s]_{\sim}) = \sum_{d \in [s]_{\sim}} prob^{k}(d)$$
 (7)

Proof per induction over k.

Anchor: k = 0 holds by assumption. Step: show that the following holds

Proof

Proof Part 2

Assumption:
$$prob_{red}^{k+1}([s]_{\sim}) =$$

$$= \sum_{[d]_{\sim} \in S_{red}} prob_{red}^{k}([d]_{\sim}) \cdot prob_{red}([d]_{\sim}, [s]_{\sim})$$

$$= \sum_{[d]_{\sim} \in S_{red}} (\sum_{e \in [d]_{\sim}} prob^{k}(e)) \cdot (\sum_{f \in [s]_{\sim}} prob(d, f))$$

$$= \sum_{[d]_{\sim} \in S_{red}} \sum_{e \in [d]_{\sim}} prob^{k}(e) \cdot prob(d, f)$$
and with $prob(e, f) = prob(d, f)$

$$= \sum_{[d]_{\sim} \in S_{red}} \sum_{e \in [d]_{\sim}} prob^{k}(e) \cdot prob(e, f)$$

$$= \sum_{[d]_{\sim} \in S_{red}} \sum_{e \in [d]_{\sim}} prob^{k}(e) \cdot prob(e, f)$$

$$= \sum_{e \in S} \sum_{f \in [s]_{\sim}} prob^{k}(e) \cdot prob(e, f)$$

$$= \sum_{f \in [s]_{\sim}} prob^{k+1}(d)$$

Proof

Proof Part 3

Thereby,
$$\forall k : prob_{red}^k([s]_{\sim}) = \sum\limits_{d \in [s]_{\sim}} prob^k(d)$$
.

lils Müllner 12/17

Corollary

Corollary 1

Theorem 1 and the first two conditions from Definition 2 imply that the limiting availability LWA $_0$ satisfies LWA $_0(\mathcal{D},\mathcal{P})=$ LWA $_0(\mathcal{D}',\mathcal{P}')$. Thereby LWA $_0(\mathcal{D},\mathcal{P})=\sum\limits_{s\models\mathcal{P}}\text{prob}^{\infty}(s)$ and consequently LWA $_0(\mathcal{D}',\mathcal{P}')=\sum\limits_{[s]_{\sim}\models\mathcal{P}'}\text{prob}^{\infty}_{red}([s]_{\sim}).$

Theorem 2/2

Theorem 2

$$\label{eq:LWA} \begin{split} \textit{LWA}(\mathcal{D}, \mathcal{P}) \sim \textit{LWA}(\mathcal{D}', \mathcal{P}') : \textit{red}(\mathcal{D}, \mathcal{P}) = (\mathcal{D}', \mathcal{P}') \\ \textit{with } \mathcal{D} = (\textit{S}, \textit{prob}), \textit{prob} : \textit{S} \times \textit{S} \rightarrow \mathbb{R} \end{split}$$

analogously...

Nils Müllner 15/1

So what?

So what?

ils Müllner 16/17

ills Müllner 16/17

So what?

ils Müllner 16/1

So what?

lils Müllner 16/1

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Nils Müllner

nils.muellner@informatik.uni-oldenburg.de Abteilung Systemsoftware und verteilte Systeme Department für Informatik Carl von Ossietzky Universität Oldenburg

29. March 2012

Nils Müllner 17/17