Combining Decomposition and Reduction for
State Space Analysis of a Self-Stabilizing System

Nils Mullner

nils.muellner@informatik.uni-oldenburg.de
Abteilung Systemsoftware und verteilte Systeme
Department fiir Informatik I

v Carl von Ossietzky Universitdt Oldenburg
OSSIETVZ?(,:
universitdt|[OLDENBURG OFFIS
29. March 2012

N7o eSS

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

outline

@ Example

@ Decomposition and Reduction: Example
© Computation of Limiting Window Avaiability

O Conclusion

Nils Miillner

Reduction for State Space Analysis of a Self-Sta

Example
@0

self-stabilizing broadcast

const id 1= 0,
var reg,
repeat{

reg := 0}

Figure: Root Process

Nils Miillner

const neighbors := {mj,...},

const id := min{id(n;),...} +1,

var reg,

var set := reg;, m(reg;) €
neighbors|¥i : id(m;) = id — 1}

repeat{

—((3reg; : w(reg;) € set A reg; =2)

xor(3reg; : mw(reg;) € set Areg; =0))

— reg =1

O3reg; : w(reg;) € set A reg; =0
— reg :=0

OFreg; : w(reg;) € set A reg; =2
— reg :=2}

Figure: Broadcast Sub-Algorithm for
Non-Root Processes

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Example
@0

self-stabilizing broadcast

const id 1= 0, const neighbors := {m;j,...},
var reg, const id := min{id(7;),...} + 1,
repeat{ var reg,
reg = 0} var set := reg;, m(reg;) €
neighbors|¥i : id(m;) = id — 1}

Figure: Root Process

repeat{
—((3reg; : w(reg;) € set A reg; =2)
xor(3reg; : m(reg;) € set Areg; =0))

— reg =

O3reg; : w(reg;) € set A reg; =0
— reg :=0

OFreg; : w(reg;) € set A reg; =2
— reg :=2}

Figure: Broadcast Sub-Algorithm for
Non-Root Processes

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Example
@0

self-stabilizing broadcast

const id 1= 0, const neighbors := {m;j,...},
var reg, const id := min{id(7;),...} + 1,
repeat{ var reg,
reg = 0} var set := reg;, m(reg;) €
neighbors|¥i : id(m;) = id — 1}

Figure: Root Process repeat{

—((3reg; : w(reg;) € set A reg; =2)
xor(3reg; : m(reg;) € set Areg; =0))

— reg =1
. O3reg; : w(reg;) € set A reg; =0
— reg :=0
id=0 OFreg; : w(reg;) € set A reg; =2
— reg :=2}

id =i > Figure: Broadcast Sub-Algorithm for
Non-Root Processes

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Example
@0

self-stabilizing broadcast

const id 1= 0, const neighbors := {m;j,...},
var reg, const id := min{id(7;),...} + 1,
repeat{ var reg,
reg = 0} var set := reg;, m(reg;) €
neighbors|¥i : id(m;) = id — 1}

Figure: Root Process repeat{

—((3reg; : w(reg;) € set A reg; =2)
xor(3reg; : m(reg;) € set Areg; =0))

— reg =
. O3reg; : w(reg;) € set A reg; =0
— reg :=0
id=0 OFreg; : w(reg;) € set A reg; =2
— reg :=2}

id =i > Figure: Broadcast Sub-Algorithm for
Non-Root Processes

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Example
@0

self-stabilizing broadcast

const id 1= 0, const neighbors := {m;j,...},
var reg, const id := min{id(7;),...} + 1,
repeat{ var reg,
reg = 0} var set := reg;, m(reg;) €
neighbors|¥i : id(m;) = id — 1}

Figure: Root Process repeat{

—((3reg; : w(reg;) € set A reg; =2)
xor(3reg; : m(reg;) € set Areg; =0))

— reg =
. O3reg; : w(reg;) € set A reg; =0
— reg :=0
id=0 OFreg; : w(reg;) € set A reg; =2
— reg :=2}

id =i > Figure: Broadcast Sub-Algorithm for
Non-Root Processes

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Example
@0

self-stabilizing broadcast

const id 1= 0, const neighbors := {m;j,...},
var reg, const id := min{id(7;),...} + 1,
repeat{ var reg,
reg = 0} var set := reg;, m(reg;) €
neighbors|¥i : id(m;) = id — 1}

Figure: Root Process repeat{

—((3reg; : w(reg;) € set A reg; =2)
xor(3reg; : m(reg;) € set Areg; =0))

— reg =
. O3reg; : w(reg;) € set A reg; =0
— reg :=0
id=0 OFreg; : w(reg;) € set A reg; =2
— reg :=2}

id =i > Figure: Broadcast Sub-Algorithm for
Non-Root Processes

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Example
@0

self-stabilizing broadcast

const id 1= 0, const neighbors := {m;j,...},
var reg, const id := min{id(7;),...} + 1,
repeat{ var reg,
reg = 0} var set := reg;, m(reg;) €
neighbors|¥i : id(m;) = id — 1}

Figure: Root Process repeat{

—((3reg; : w(reg;) € set A reg; =2)
xor(3reg; : m(reg;) € set Areg; =0))

— reg =1
. O3reg; : w(reg;) € set A reg; =0
— reg :=0
id=0 OFreg; : w(reg;) € set A reg; =2
— reg :=2}

id =i > Figure: Broadcast Sub-Algorithm for
Non-Root Processes

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Example
@0

self-stabilizing broadcast

const id 1= 0, const neighbors := {m;j,...},
var reg, const id := min{id(7;),...} + 1,
repeat{ var reg,
reg = 0} var set := reg;, m(reg;) €
neighbors|¥i : id(m;) = id — 1}

Figure: Root Process

repeat{
—((3reg; : w(reg;) € set A reg; =2)
xor(3reg; : m(reg;) € set Areg; =0))

— reg =

O3reg; : w(reg;) € set A reg; =0
— reg :=0

OFreg; : w(reg;) € set A reg; =2
— reg :=2}

Figure: Broadcast Sub-Algorithm for
Non-Root Processes

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Example
@0

self-stabilizing broadcast

const id 1= 0, const neighbors := {m;j,...},
var reg, const id := min{id(7;),...} + 1,
repeat{ var reg,
reg = 0} var set := reg;, m(reg;) €
neighbors|¥i : id(m;) = id — 1}

Figure: Root Process

repeat{
—((3reg; : w(reg;) € set A reg; =2)
xor(3reg; : m(reg;) € set Areg; =0))

— reg =

O3reg; : w(reg;) € set A reg; =0
— reg :=0

OFreg; : w(reg;) € set A reg; =2
— reg :=2}

Figure: Broadcast Sub-Algorithm for

st =P :regy =0N... A reg; =0 Non-Root Processes

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Example
oe

Limiting Window Availability

probability, that, from the limit, s = P for one step within window

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Example
oe

Limiting Window Availability

Definition 1 (Limiting Window Availability (LWA))

Assume that at time t = 0, an initial distribution holds that
corresponds to the stationary distribution of a system. Then,
Limiting Window Availability of window size w (of this system),
denoted by LWA,,, w > 0, is the probability that the system has at
least once reached a state satisfying P within the following w time
steps:

LWA,, = prob{3k,0 < k < w : s, = P}

w is called window size.

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Decomposition and Reduction: Example
[Je]ele]

Trivia

e has 648 states: 2% 2% 2% 3% 3% 3% 3,
(0,0,0,0,0,0,0),...,(2,2,2,2,2.2 2)

e probabilistic scheduler

e serial execution semantics (to exclude hazards)

e transient faults g = 0.05

e processes [m2 with 73], and [75 with 7g], are strongly
probabilistic bisimilar

e lumping allows for reduction to 324 states

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Decomposition and Reduction: Example
[o] Je]e]

Plan of Action

tabilizing System

Dy_
DD
(@é&@e

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Decomposition and Reduction: Example
[o] Je]e]

Plan of Action

 handling at most 81 state at a time
until recomposition

o self-stabilization transforms transition model
into a DAG

o exploitable symmetries in heterarchical systems

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Decomposition and Reduction: Example
[e]e] o]

the Markov chain D to compute the LWA

Jfrom/to— (0,0,0) (2,0,0) (0,2,0) (0,0, 2)
(0,0,0) 0.978571 | 0.007143 | 0.007143 | 0.007143
(2,0,0) 0.135714 | 0.578571
(0,2,0) | 0.135714 0.850000
(0,0,2) | 0.135714 0.850000
(2,2,0) 0.135714
(2,0,2) 0.135714
(0,2,2) 0.135714 | 0.135714

Tfrom/to— | (2,2,0) | (2,0,2) | (0,2,2) | (2,2,2)
(2,0,0) | 0.142857 | 0.142857
(0,2,0) 0.007143 0.007143
(0,0,2) 0.007143 | 0.007143
(2,2,0) |"OI721429 0.142857
(2,0,2) 0.721429 0.142857
(0,2,2) 0.721429 | 0.007143
(2,2,2) 0.135714 | 0.864286

Table: D1 _ ({regy, reg,, regs))

ecomposition and Reduction for State Space Analysis of a Self-Stabilizing System

the Markov chain D to compute the LWA

[Jfrom/to— | (0,0,0) | (2,0,0) | (0,1)

(2,1) | (0,2,2) | (2,2,2) |

ecomposition and Reduction for State Space Analysis of a Self-Stabilizing System

(0,0, 0) 0.9786 0.0071 0.0143
(2,0,0) 0.1357 | 0.5786 0.2857
(0,1) 0.1357 0.8500 | 0.0071 | 0.0071
(2,1) 0.1357 | 0.7214 0.1429
(0,2,2) 0.2714 0.7214 | 0.0071
(2,2,2) 0.1357 0.8643
Table: D _

the Markov chain D to compute the LWA

[Ifrom/to— |) [) | 2 |
(0) ry = 0.982972 s4 = 0.008687 ts = 0.008341
(1) us = 0.055813 v4 = 0.930721 wy = 0.013466
(2) x4 = 0.081422 | y4 = 0.023461 z4 = 0.895117

Table: Dy,

ecomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Decomposition and Reduction: Example
[e]e]e])

recomposition

D' = zeros(324);

forj=1:6do
for /| =1:54 do
fori=1:6do

for k =1:54 do

if i # Al # k then
D((—1)-54+1,(i—1)-54+1) =
Di’_((jfl)-54+l,(if1).54+l)+Di’_(j,i).D§(l,k)-%;
D((—1)-54+1,(j—1)-54+ k) =
D{,_((j—1)-54+I,(j—1)-54+k)+D’,_(j,i)~D§(l,k)-

else
D((J—1)-54+1,(i—1)-54+ k) =
D{,_((j—l)-54+l,(i—1)-54+ k)-l—D”_(j,i)-Dg(l, k);

~is

_and Dy to D’

Figure: Recomposition of D

ecomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Decomposition and Reduction: Example
[e]e]e])

recomposition

o matrix multiplication is tricky

« serial execution semantics prohibit
Kronecker/Hadamard

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Computation of Limiting Window Avaiability
0000000

Equivalence Class Qualifications

Definition 2
si~sie ((ssEPVsEP)A

(si =P Vs =PV
Vs € S : prob(s;,s) = prob(s;, s)

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Computation of Limiting Window Avaiability
(o] Jelelele]e]

D Lumping (strongly probabilistic bisimilar)

Definition 3
- red(D, P) = (D', P') (1)
D' = (Sred; Probeq) (2)
Sred = {[s]~|s € S} (3)
(4)

prob ey([si]~. [sj]~) = Z prob(d;, dj), dj € [sj]~ 4
di€[si]~
[sl- EP = 3de[s]l.:dEP (5)

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Computation of Limiting Window Avaiability
[e]e] lelele]e]

Theorem 1/2

Theorem 1

probs([sl~) = Y prob™(d) (6)
de[s]~

Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Example osition and Reduction: Example Computation of Limiting Window Avaiability

[e]e]e] Jelele)

Proof

Proof Part 1

Let prob® be an arbitrary initial distribution for D and let

prob® ,([s]~) = > prob®(d) be an initial distribution for D'
de[s]~

Show that for prob* and probk.,, which are the probability

distributions for D (D' respectively) at time point k with an initial

distribution prob® (prob%; respectively) the following holds:

Vi : probley([s]~) = D prob*(d) (7)
de[s]~
Proof per induction over k.
Anchor: k = 0 holds by assumption.
Step: show that the following holds

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Computation of Limiting Window Avaiability
[e]e]e] Jele]e]

Proof
Proof Part 2

Assumption: prob i!([s]~) =

= 3 probrey([d]~) - probyeg([d]~. [s]~)

[d]~ €Sred
= X (X prob(e))-(X prob(d,f))
[d]~ ESred e€[d]~ fels]~

= S 3 3 prob*(e)- prob(d, f)

[d]~ €ESreq €€[d]~ FE[s]~ (

and with prob(e, f) = prob(d, f)

= S 3 3 probX(e) - prob(e, f)
[d]~ €Sred €€[d]~ FE[s]~

=Y 3 prob*(e) - prob(e, f)

ecS fels]

>> X prob“(e) - prob(e,)
fe[s]~ e€S

> prob*i(d)
de[s]~

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Computation of Limiting Window Avaiability
[e]e]e] Jele]e]

Proof

Proof Part 3

Thereby, Yk : probX ,([s]~) = 3. prob*(d). O
de(s]~

Nils Miillner

Reduction for State Space Analysis of a Self-Sta

Computation of Limiting Window Avaiability
[e]e]ele] le]e]
Corollary

Corollary 1

Theorem 1 and the first two conditions from Definition 2 imply
that the limiting availability LWAq satisfies
LWAo(D, P) = LWAy (D', P"). Thereby
LWAo(D,P) = > prob>(s) and consequently
sEP
LWAN(D', Py = > proboey([s]~).
[s]~ =P’

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Computation of Limiting Window Avaiability
[e]e]ele]e] o]

Theorem 2/2

Theorem 2

LWA(D, P) ~ LWA(D',P') : red(D, P) = (D', P')
with D = (S, prob),prob: § x S — R

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Computation of Limiting Window Avaiability
000000

Proof 2/2

analogously...

Decompositio Reduction for State Space Analysis of a Self-Stabilizing System

Conclusion
@0

So what?

Probability

o
fo2}
‘

200 400 600 800 1000
[teration

o
sl

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Example tion and Reduction: Example of Limiti i ability Conclusion

So what?
% ‘
s I i
® 0.8
O T
B
= 06 L
s
Eiog I —
=0 ——
S0z ——
S ———
P i
S 043 549 —
= State 324 20 40 60 80 109

Iteration

Nils Miillner

Combini ecomposition and Reduction for State Space Analysis of a S tabilizing System

Conclusion

o0

(=4

-

50 .
Iteration

tate

<
sSe\ A)fiqeqoag

=
7
2
1]
>
(2]
20
=
A
=
il
3
(%]
w“
(7}
(2]
©
“
o
12
@
=
©
=
<
o
o
@
=3
(%]
[
2
©
3
(%]
L
=
.2
=1
15}
=
o
31
['4
o
c
©
=
.2
=3
@
o
a
E
o
o
1}
[a)]
o0
=
=
8
£
o
O

So what?

Nils Miillner

Conclusion
@0

So what?

0.08 ‘ ‘
43rd State:

.07 (0,0,0,1,1,1,1)]

0.06
:
© pu(
< 0.05
o
o
& 0.04
0.03, 20 40 . 60 80 100
Iteration

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Conclusion
@0

So what?

0.08

109th State:
(0,1,0,0,0,0)

S
>
S8

Probability Mass

b 20 0 60 80 100
Iteration

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

Conclusion
oe

Combining Decomposition and Reduction for
State Space Analysis of a Self-Stabilizing System

Nils Mullner

nils.muellner@informatik.uni-oldenburg.de
Abteilung Systemsoftware und verteilte Systeme
Department fiir Informatik I

v Carl von Ossietzky Universitdt Oldenburg
OSSIETVZ?(,:
universitdt|[OLDENBURG OFFIS
29. March 2012

N7o eSS

Nils Miillner

Combining Decomposition and Reduction for State Space Analysis of a Self-Stabilizing System

	Example
	Decomposition and Reduction: Example
	Computation of Limiting Window Avaiability
	Conclusion

