
Deriving a Good Trade-off Between
System Availability and Time Redundancy

Nils Müllner, Abhishek Dhama, Oliver Theel

Carl von Ossietzky Universität Oldenburg
Department of Computer Science

D-26111 Oldenburg, Germany
Email: {nils.muellner|abhishek.dhama|oliver.theel}@informatik.uni-oldenburg.de

Abstract

What to do if at a given time a service dearly
required is unavailable? Is it a good strategy to
simply invoke the service again (and again)? How
many times should one retry in such a situation in
order to get a the service delivered with a reasonably
high probability but without “losing too much time?”
In this paper, we explore the relation between time
redundancy that a system can utilize to cope with faults
and the increase of system availability. We propose
a generalization of instantaneous availability called
instantaneous window availability to systematize our
approach. We then present two methods for deriving
trade-off solutions in terms of average instantaneous
window availability, namely Markov model analysis
and discrete-time simulation. We apply these methods
to two instances of a self-stabilizing system and discuss
the outcome.

1. Introduction

Widely used measures to quantify the fault-tolerance

property of a system under a given fault model are re-
liability, instantaneous availability, and limiting avail-
ability [1]. Reliability is defined as the “continuity of

correct service” of a system [2] and is used for systems

where failed components are not repaired. Thus, the

system’s “lifetime” consists of a single, initial “up”

phase followed by an eternal “down” phase. In an

“up” phase, the system is expected to correctly deliver

a service the system user is interested in, whereas

in a “down” phase the system does not. Reliability

is the probability that at time t > 0 the system is

still in its only “up” phase. In contrast, availability

analysis is suited for systems with repairs of failed

components. Thus, a system toggles between “up” and

“down” phases throughout its “lifetime.” Availability

therefore can be regarded as the “readiness for correct

service” [2]. Instantaneous availability is the probabil-

ity that the system is in an “up” phase at time t > 0
under the condition that it was in an “up” phase at

time t = 0. Note that instantaneous availability is

equivalent to reliability in the absence of component

repairs. Availability analysis often is concerned with

the probability that a system is in an “up” phase after a

“sufficiently long time” after system start when looking

at it at an arbitrary point in time t > 0. The precise

value of t, in this case, is irrelevant. For this purpose,

limiting availability is used. It is defined as the limiting

value of instantaneous availability as the observation

point t approaches infinity. It is interesting to observe,

that for limiting availability, the requirement of the

system to start its “lifetime” in an “up” phase can be

dropped. In this paper, we investigate the following

situation. Imagine, a system user requests a service

of a system that has already been running for a long

time at a point t in time with 0 � t < ∞. With

a certain probability, the system is able to perform

the required service at time t. Clearly, this probability

corresponds to instantaneous availability at time t
and, as t is chosen very large, approaches limiting

availability of the system with t → ∞. If the system

is available at time t (i.e., it is in an “up” phase)

then the service is delivered to the system user. But

what should the system user do in case the system is

unavailable? A possible strategy might be to simply

request the service again, “some time later” hoping

that the system has been repaired in the meantime. But

how long should the system user wait and how many

times should he or she resubmit the service request

in case the repeated requests could not be serviced?

Obviously, there is a trade-off relation between the

“time” the user is willing to spend and the increase in

probability that the system delivers a correct service

to the system user within the allowed time-frame.

Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing

978-0-7695-3737-5/09 $25.00 © 2009 IEEE

DOI 10.1109/UIC-ATC.2009.88

61

Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing

978-0-7695-3737-5/09 $25.00 © 2009 IEEE

DOI 10.1109/UIC-ATC.2009.88

61

Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing

978-0-7695-3737-5/09 $25.00 © 2009 IEEE

DOI 10.1109/UIC-ATC.2009.88

61

Analyzing this trade-off relation for a given system

followed by an exploitation of particularly suited points

is expected to be a promising optimization strategy for

highly available systems: as we will show, it basically

transforms a “certain amount of time redundancy” into

a generalized form of instantaneous availability of a

system. We call this generalized form instantaneous
window availability.

In the scope of this paper, we restrict the investi-

gation of the trade-off between time redundancy and

instantaneous window availability to discrete-time sys-

tems that execute in computational steps, i.e., systems

that are only active at discrete points k = 0, 1, . . .
in time. Furthermore, the “time to wait” until a re-

try of service invocation is performed, is assumed

being exactly one step. For example, if the system

was unavailable at step k = 4711 then a re-try is

triggered at step k = 4712. At most w service in-

vocations, including the first invocation, are attempted.

This maximal number of overall attempts w is referred

to as window (size). Since the particular realization

of the trade-off relation is obviously fault model-

and system-specific, we show the exploitation by two

instances of an example discrete-time system, namely

a self-stabilizing implementation of the breadth first

search algorithm [3] subject to an arbitrary number

of transient faults. The example system’s instances

comprise three and five processes, respectively. They

are analyzed using two methods: 1) by analysis em-

ploying the probabilistic model checker PRISM [4]

and 2) by event-based simulation using the simulation

framework SiSSDA [5]. Although the analysis is able

to derive the precise trade-off, state-space explosion

may easily render this method inutile for relatively

small problem sizes. Contrarily, event-based simulation

is able to cope with larger problem sizes often at the

cost of less precise results. The paper is structured as

follows. In Section 2, we state necessary definitions

and our system model followed by a certain way

of system embedding we subsequently built upon. In

Section 3, we propose the notion of instantaneous

window availability and describe our approaches of

how to quantify the trade-off using an analytic as

well as a simulation method. In Section 4, we present

two instances of an example system on which we

subsequently apply the two methods. Furthermore, we

present the results and interpret them. In Section 5, we

give a brief overview over related work. Finally, we

conclude with an outlook on future work in Section

6.

2. System Model and System Embedding

We now give general definitions and explain the

system model that specifies a system whose availability

is to be increased by adding time redundancy. As we

will see, in the scope of this paper, we chose a so-

called self-stabilizing system for this purpose. This

system is subsequently embedded into a conceptional

model we use for transforming time redundancy into

instantaneous window availability. In particular, using

this conceptional model, there is no need to alter the

original way, system user and system interact.

2.1. Definitions and System Model

A distributed system S consists of a finite set of

processes V = {v0, ..., vn−1} along with an underlying

communication infrastructure. The communications

network of the distributed system is represented by an

undirected graph G = (V,E) that consists of a set of

processes V and a set of edges E ⊆ V × V . Two nodes

vi and vj are neighbors iff {(vi, vj), (vj , vi)} ⊆ E.

We assume a shared memory model implying that

each process has access to two sets of communica-

tion registers: write and read communication registers.

Write communication registers can be read and written

by the process they belong to whereas read com-

munication registers can only be read. For example,

process vi may write into write communication register

wi,j . By reading read communication register rj,i,

process vj may subsequently access the value written

by process vi. There is assumed to exists one such pair

of read and write communication registers per element

in E.

The (local) state c(vi) of a process vi is given

by a vector consisting of the values of this process’

local variables and write communication registers (read

communication register values are not part of the local

state) according to some arbitrary but fixed total order

of variables and communication registers. The global
state C of a system S is analogously given by a

vector of local states of the constituent processes, i.e.

C := 〈c(v0), ..., c(vn)〉.
Each process is specified in terms of a set of guarded

commands of the form 〈guard〉 → 〈assignment〉[6].

A guarded command consists of a guard and an

assignment statement. A guard is a boolean expression

over the local variables and the read and the write com-

munication registers of a process. A guarded command

is said to be enabled if the boolean expression in the

guard holds true. An assignment statement may involve

the particular process’ read communication registers

626262

for reading and writing communication registers as

well as local variables for reading and writing.

An execution E of a distributed system S
is a maximal sequence of global states E =
〈C0, ..., Ci−1, Ci, ...〉 such that Ci is reached from

Ci−1 via execution of the assignment statement of one

enabled guarded command. In each step, a scheduler

chooses one enabled guarded command to execute

in a non-deterministic fashion. In other words, we

assume serialized execution semantics in the scope

of this paper [7]. We also assume that the scheduler

is weakly fair ensuring that a continuously enabled

guarded command is chosen eventually [8].

The self-stabilization property of a distributed sys-

tem S is defined with respect to a predicate P , where

P specifies the set of legal states. A distributed system

S is self-stabilizing with respect to a predicate P iff

it satisfies the following conditions for all possible

execution sequences [9]:

1) Convergence: ∃i : Ci |= P , guaranteeing that,

irrespective of the starting state, the system

reaches the set of legal states within a finite

number of steps

2) Closure: Ci |= P ⇒ Ci+1 |= P , implying that

the system does not leave the set of legal states

voluntarily.

The distributed system is assumed to execute in an

environment subject to an arbitrary number of transient
faults potentially impacting the distributed system’s

global state. The manifestation of a fault is an error
in the global state. If the error is such that predicate

P is falsified then this situation constitutes a failure of

the service provided by S: the service in unavailable
(or “down” synonymously). Otherwise, if P holds, the

distributed system is said to be available (or “up”).

Note that – due to the self-stabilizing nature – the self-

stabilizing system always tries to “repair failures” in

case P does not hold and new failures do not occur.

In the remainder of the paper, we use the term

“distributed system” and “system” synonymously.

2.2. System Embedding

For ease of system usage, we delegate the burden

of re-requesting service invocation by the system user

to a level beneath the user as shown in Figure 1(a).

We call this level and the component implementing it

fault masker. Thus, the system user simply specifies

how long (in terms of service re-invocation rounds

and – synonymously – computation steps) he or she

is at most willing to wait for a successful service

deliverance and calls the fault masker. In the figure,

request response

fault
masker

system
user

system

service unavailable service available

request response

time redundancy

maximal

(a) (b)

Figure 1. System Embedding

this value is set to four rounds, corresponding to a

window size w = 3. The fault masker, subsequently,

invokes the service and, if the service can be correctly

delivered, conveys the result to the system user, who is

– in this case – unblocked and can enjoy the service.

If the system could not correctly be delivered then

the fault masker perfectly detects this mishap and re-

invokes the service in the next round. Only if the

maximum number of rounds has been exceeded then

the fault masker eventually informs the system user of

the unavailability of the service, thereby unblocking

the system user. This situation is depicted in Figure

1(a), where all four invocations fail. In Figure 1(b),

contrarily, the second invocation was successful and

lead to a deblocking of the system user.

Due to the masking nature of the fault masker wrt.

failed service invocations, one can also regard our

approach as a method for increasing the degree of
masking experienced by the system user. Thus, when

regarding the resultant system after the embedding, the

degree of masking is traded against availability.

In case of our self-stabilizing example, the fault

masker, for detecting the unavailability of the requested

service, simply checks whether predicate P is falsified.

Contrarily, if P holds then the service is available and

can be delivered to the system user. If a system other

than a self-stabilizing system is used, for example a

masking fault-tolerant system such as a data replication

system based on majority voting then fault detection

might become as easy as checking for a certain “error

return value” delivered by the system.

3. Concepts and Methods for Trade-off
Quantification

In this section, we propose a generalization of

instantaneous availability notions called instantaneous
window availability. We subsequently motivate the

usefulness of instantaneous window availability as

fault-tolerance measure for long-running systems.

Then, we describe how to evaluate limiting window

availability for a given self-stabilizing system, 1) by

636363

analysis and 2) by simulation.

3.1. Instantaneous Window Availability
In order to quantify the probability that the system

user of the embedded system depicted in Figure 1 can

successfully use the service, we propose a general-

ization of the instantaneous availability fault-tolerance

measure. Formally, instantaneous availability A(t) of a

system S is the probability that system S is in an “up”

phase at time t under the constraint that it was correct

at time t = 0 (i.e., A(0) = 1). As proposed in [1], for

self-stabilizing systems wrt. predicate P – which are

discrete-time systems where execution evolves step by

step – instantaneous availability is defined as

A(k) := P (Pk | P0) (1)

with Pi being that predicate P holds true at step i.
Based on this, limiting availability of a self-stabilizing

system is defined as

A := lim
k→∞

A(k) (2)

Note that limiting availability is independent of the

starting state of the system at k = 0. For steps k with

0 << k < ∞, the system “behaves more and more”

independent of the particular starting state.

Definition 1: Given a system S that self-stabilizes

wrt. predicate P . Then, the probability A(k,w), k,w ∈
N0, with

A(k,w) := A(k)+
P

(Pk · Pk+1 + . . . + Pk · . . . · Pk+w−1 · Pk+w

)

is called instantaneous window availability of the

system at step k with window (size) w. �
Clearly, instantaneous window availability with win-

dow size w = 0 is identical to the instantaneous

availability of the system at step k. Furthermore, it is

obvious that an increase in the window size results

in either an unchanged or increased instantaneous

window availability.

We are now interested in figuring out a particular

window size w for a given system and fault model that

leads – on the average – to an instantaneous window

availability increase “worth spending” up to w − 1
additional service invocation attempts.

3.2. An Analytical Method

The crucial part of the analytical method is the

representation of a self-stabilizing system as a discrete-
time Markov chain (DTMC). A stochastic process is

a DTMC if it has the following property: P (Ck =
xk | Ck−1 = xk−1 · Ck−2 = xk−2 · · · · · C1 =

xk−1) = P (Ck = xk | Ck−1 = xk−1), implying that

the probability of the transition between the states Ck

and Ck−1 depends only on the state Ck−1 [10].

The states of a DTMC representing a self-stabilizing

system are the same states as the ones of the self-

stabilizing system. Thus, there is a one-to-one mapping

between the states of a self-stabilizing system and its

resulting DTMC. As the resultant model – i.e., DTMC

– is a probabilistic system devoid of non-determinism,

the transition probabilities must encode the behavior

of the scheduler. In the following, we explain how to

calculate the transition probabilities between any two

states of the system.

The behavior of a non-deterministic fair scheduler is

instantiated by assigning a probability to the event that

the scheduler chooses a process vi. We assume that pSi

is the probability that the scheduler chooses the process

vi such that
∑n−1

i=0 pSi = 1. Choosing a process

suffices in the scope of our example system since every

process at every step has exactly one enabled guarded

command. Since the fault model assumes that transient

faults can occur intermittently, the probability that a

fault occurs instead of a computation step is pF . A

transient fault most likely leads to a state transition.

Thus, the probability of the state transition between

the states Ci and Cj – due to a fault – is assumed to

be pFij
. The transition between any two states, Cm

and Cn, may be caused by a computation step or by

a transient fault. In case the transition is exclusively

due to a transient fault then the probability of such a

transition is pFpFmn
. However, if the execution of a

guarded command in the state Cm leads to the state Cn

then the probability of the transition is the sum of the

probability that the process is selected by the scheduler

and executes its enabled guarded command, and the

probability that a transient fault led to the transition.

The probability that process vi executes its enabled

guarded command is pSi(1−pF). Thus, the probability

of such a transition is pSi(1 − pF) + pFpFmn
. The

transition probabilities for each pair of states can be

constructed in the fashion described above to derive

the DTMC representing a self-stabilizing system.

A DTMC derived as described above can be an-

alyzed using a probabilistic model checker such as

PRISM [4]. Properties such as the “probability to reach

the legal set of states in k steps” or the “average

number of steps to reach a safe state” can be computed

using PRISM.

However, due to the fact that the set of initial

states is equal to the set of states itself, probabilistic

model checking suffers from state space explosion.

This problem can be circumvented for larger systems

by employing simulation to derive values of fault

646464

tolerance measures. We next describe a simulation

framework that is suitable for this task.

3.3. A Simulation Method

The simulation framework for self-stabilizing dis-

tributed algorithms (SiSSDA) [5] is a tool to acquire

empirical results. Scenarios consisting of a scheduler,

a system definition (i.e., the distributed system’s topol-

ogy), a fault model, and an algorithm to be executed

can be specified to measure fault tolerance properties.

SiSSDA starts a given system in an arbitrary state,

executes at least a predefined number j of steps

(“swing-in time”) plus an additional, randomly chosen

number i of steps due to a homogeneous distribution

over some interval. After executing i + j steps, it

is checked whether the current system state satisfies

P or not. If the system does not then simulation

continues until P is eventually satisfied. The number

of additional steps w from step i + j to step i + j + w
at which S |= P holds first since step i + j, is

the experiment’s result, we are interested in. After a

sufficiently large number of experiments m, SiSSDA

prompts the relative frequency of the system requiring

w = 0, 1, . . . (additional) steps to first fulfill P when

starting to ask for it at step i + j, i.e., the absolute

values are divided by m.

4. Example
After we introduced the system model, the methods

of analytic derivation and derivation by simulation,

we apply those methods on an example in order to

obtain average values of A(k,w) with k � 0 being

chosen from some homogeneously distributed interval.

Among others, this will give guidance in answering

the question of how large the window size should be

in order to obtain an instantaneous window availability

of a certain amount on the average.

4.1. System Specification
As an example, we chose the popular distributed

self-stabilizing breadth first search algorithm (BFS)

[3]. The algorithm consists of one sub-algorithm for

the root process and one sub-algorithm for all other

process. It builds in a self-stabilizing fashion a span-

ning tree among the process participating in the al-

gorithm. System S1 consists of three process, a, b,

and c, (as shorthands for precesses v0, v1, and v2)

such that there is a communication link between all

the process as shown in Figure 2(a). System S2 is

built accordingly as shown in Figure 2(b). On these

topologies we execute the self-stabilizing distributed

BFS algorithm [3].

In three instances, we employ fault probabilities

of 0.01, 0.05, and 0.1. We measure the average in-

stantaneous window availability wrt. k � 0 in some

interval. We derive results using both methods for

system S1. For system S2, unfortunately but not too

astonishingly, due to state space explosion, analysis

was not feasible. But by showing similarity of results

derived through both methods for system S1, we feel

to have established believe in the validity of results

derived by simulation for system S2.

(a) Three Process
System

(b) Five Process System

Figure 2. Topology of Systems S1 and S2

4.2. Analysis Settings
We analyzed the performance of the self-stabilizing

BFS spanning tree algorithm on systems comprising

of three process. We assumed that the probabilis-

tic scheduler follows uniform probability distribution

while selecting the next process to execute. Hence,

pSi, the probability of the scheduler selecting a pro-

cess is 0.3. We also assumed that the transitions

caused by transient faults follow a uniform probability

distribution over the system states. The probability

of state transitions between any two pairs of states

due to transient faults in the three process system is

0.000152439. The probabilities of transitions between

the pairs of state Cm and Cn, such that Cn is reachable

from Cm via a guarded command execution, is given

by the expressions 0.3(1 − pF) + 0.000152439. The

DTMC derived in this fashion was model checked with

PRISM.

The system was evaluated in two steps. In order

to derive the probability distribution over the system

states for the long running system, we determined

the probability of the system being in a specific state

after 100 steps irrespective of the starting state. This

probability was determined for all possible system

states. In the next step, the probability of reaching

the legal state within w steps was determined for a

specific initial state and w was varied from 1 to 30.

In a fashion similar to the first step, the probability

of reaching the legal state within w steps was also

determined for all possible system states. The average

increase compared to instantaneous availability (i.e.,

A(k,w)) of the three-process system (for each w)

was then derived by computing the weighted mean

656565

of the probabilities derived in the second step. The

probability distribution over the system states in a long

run was used to determine the weighted mean.

4.3. Simulation Settings
For both systems S1 and S2 and every single ex-

periment, we chose a swing-in phase of j = 1000
steps starting from an arbitrary system state. Then, at

step i+j with i being homogeneously distributed over

the [1, 1000] interval, a service request was first issued

and the particular number w of steps until the first

successful service deliverance recorded. The number m
of experiments executed for any given fault probability

was set to 30, 000.

4.4. Results
Please note that the graphs presented in this section

show continuous lines. We have connected the discrete

points of each step only for a better visibility. It is

also worthwhile to mention that smoother graphs for

simulation can be obtained by running a larger number

of experiments.

First we present the results from the analysis for

the three process system S1 in Figure 3(a). Then we

present the results from the simulation for S1 in Figure

3(b) and the results of the simulation of the five process

system in Figure 3(c). Finally we discuss and interpret

the results.

The plots of relative increase in instantaneous win-

dow availability with respect to instantaneous win-

dow availability at w = 0, derived via analysis and

simulation, for the three process system demonstrate

similar characteristics. One can observe that as the

fault probability increases, the plot becomes less steep.

This is due to the fact that increased fault probabil-

ity implies smaller temporal separation between the

transient faults. As the temporal separation decreases,

the repairing actions of a self-stabilizing system are

disrupted more often. Thus, the system requires, on an

average, longer time to stabilize and thereby slowing

the rate of relative increase of instantaneous window

availability. A similar plot derived for the five process

system via analysis also shows the dependence of

the rate of relative increase of instantaneous window

availability over the failure probability.

Another interesting observation is the relation be-

tween the rate of relative increase of instantaneous

window availability over the size of the system. As

one can see in Figure 3(c), the rate is evidently lower

than that of the three process system. As the system

grows larger, the repairing actions and the required

information flow takes longer thus the stabilizing time

decreases.

(a) Analysis Results of System S1

(b) Simulation Results of System S1

(c) Simulation Results of System S2

Figure 3. Results

These plots can be used to determine the waiting

time necessary for the desired related increase in in-

stantaneous window availability. For instance, consider

the the plot of the five process system in Figure 3(c).

A relative increase of 66.67% instantaneous window

availability can be obtained by waiting for 10 steps if

the fault probability is 0.01. However, one has to wait

for 15 steps to obtain a similar if the fault probability

is 0.10.

666666

5. Related Work

The analytic and simulation methods employed in

this paper are per se described in [1], [5]. In the context

of this paper, these methods are used to comparatively

quantify time redundancy vs. availability trade-off of a

given self-stabilizing example system under a promi-

nent, realistic fault model. Where necessary, the basic

methods have been refined to suite the current purpose.

We are not aware of any work that previously

explored the cited trade-off. Although, when regarding

the “increased degree of masking” introduced by our

method as described in Section 2.2 then the following

literature is related.

Arora and Kulkarni [11] presented a method to

transform a fault-intolerant program into a non-

masking fault-tolerant program and subsequently into

a masking fault-tolerant program. Although Arora and

Kulkarni introduced a method to add masking to a non-

masking fault tolerant system they do not analyze the

trade-off between system availability, neither vs. time

redundancy nor vs. space redundancy.

In [12], Kulkarni and Arora, again, focus on au-

tomating the addition of fault tolerance without con-

sidering trade-off solutions.

Kulkarni and Ebnenasir [13] focus on automated

techniques to enhance fault tolerance of a non-masking

fault-tolerant program into a masking fault-tolerant

program. Yet, trade-off solutions were not investi-

gated.

6. Conclusion

We presented a new notion of system availability,

namely instantaneous window availability, and showed

how to use two methods – probabilistic model check-

ing and discrete-time simulation – for quantifying

the trade-off between time redundancy and system

availability in terms of this new notion. Furthermore,

we applied these methods on two instances of a self-

stabilizing example system implementing a breadth

first search algorithm, and demonstrated the exploita-

tion of the trade-off for the benefit of the system user.

Although we focused on an example self-stabilizing

system, the approach is not restricted to self-

stabilization. Any system, initially fault-tolerant or not,

can be equipped with the embedding technique adopted

in order to subsequently exploit the described trade-off.

An interesting research question in this context is

whether – given a particular system – a certain level

of system availability can be “cheaper” (in terms of

some cost metrics) obtained by using additional time

or space redundancy or a particular combination of the

two.

Acknowledgment

This work was partly supported by the German

Research Foundation (DFG) under grants GRK 1076/1

“TrustSoft” and SFB/TR 14/2 “AVACS”.

References

[1] A. Dhama, O. E. Theel, and T. Warns, “Reliability and
Availability Analysis of Self-Stabilizing Systems,” in
SSS ’06, 2006, pp. 244–261.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and V. M. U,
“Fundamental Concepts of Dependability,” in Proceed-
ings of the Third Information Survivability Workshop,
2000.

[3] S. Dolev, Self-Stabilization. Cambridge, MA, USA:
MIT Press, 2000.

[4] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM:
Probabilistic Model Checking for Performance and
Reliability Analysis,” ACM SIGMETRICS Performance
Evaluation Review, vol. To Appear, 2009.

[5] N. Müllner, A. Dhama, and O. Theel, “Derivation
of Fault Tolerance Measures of Self-Stabilizing Algo-
rithms by Simulation,” in ANSS ’08, Ottawa, Ontario,
Canada, 2008, pp. 183–192.

[6] E. W. Dijkstra, “Guarded Commands, Nondeterminacy
and Formal Derivation of Programs,” Comm. ACM,
vol. 18, no. 8, pp. 453–457, 1975. [Online]. Available:
http://dx.doi.org/10.1145/360933.360975

[7] M. G. Gouda and T. Herman, “Stabilizing Unison,” Inf.
Proc. Lt., vol. 35, no. 4, pp. 171–175, 1990.

[8] P. C. Attie, N. Francez, and O. Grumberg, “A Dis-
tributed Abstract Data Type Implemented by a Proba-
bilistic Communication Scheme,” in SFCS ’80, 1980,
pp. 373–379.

[9] M. Schneider, “Self-stabilization,” ACM Comp. Sur.,
vol. 25, no. 1, pp. 45–67, 1993.

[10] P. V. Mieghem, Performance Analysis of Communica-
tions Networks and Systems. Cambridge University
Press, 2006.

[11] A. Arora and S. Kulkarni, “Designing Masking Fault-
Tolerance via Nonmasking Fault-Tolerance,” IEEE
Trans. Soft. Eng., vol. 24, no. 6, pp. 435–450, 1998.

[12] S. Kulkarni and A. Arora, “Automating the Addition of
Fault-Tolerance,” in FTRTFT, London, UK, 2000, pp.
82–93.

[13] S. Kulkarni and A. Ebnenasir, “Enhancing The Fault-
Tolerance of Nonmasking Programs,” ICDCS, vol. 00,
p. 441, 2003.

676767

