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Redundancy

Spatial and Temporal

» Fault tolerance demands redundancy

» either spatial redundancy (coding theory)
» or temporal redundancy (re-requests)
> or a mix (re-requests with error detection)

» Coding theory already widely discussed

» Temporal redundancy and combination in current focus
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Liveness and Safety

] | safe — safe

live masking | non-masking
- live || failsafe

» Focus on live systems, so liveness is not an issue here
» Safety is an issue
» Focus: systems that are always live, but not always safe!
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Unmasking Fault Tolerance

Between masking <==- nonmasking fault tolerance
The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

» What trade-off solutions are possible?

» We must calculate one to show how much we pay for which degree
of masking fault tolerance

» Which of them are favorable (Pareto optimal)?
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Palisades as an Example for Cost-Benefit Ratio

1.4GHz CPU gets additional

Resilient Processors:
Self-Tuning Core
Circuit Research Lab, Hillsboro, Orega

EDC
» Capable to handle up to 8
million additional faults per
second
» Fault frequency increases by
» undervolting
» overvolting
» either save energy or increase
» cheap
» early stage already
implemented in Core i5 and
Corei7

Enhancing energy efficiency through
dynamic variation tolerance

= Detect and carrect errors due to dynamic variations

= Eliminate guardbands to improve energy & performance
= Processor “self-tunes to adapt to any environment

45nm Resilient Processor
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Intel developing Palisades

Measure of cost: time, energy, . ..

Measure of quality: availability

Basically, wherever certain classes of faults occur, liveness is
guaranteed and masking of faults costs something

vV vyVvYyy
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>

We look at parametric systems

v

What parameter values give the best trade-off?

v

Each possible system configuration has a certain degree of masking
» How to compute the degree of masking for a system configuration?
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Limiting Availability (or Steady State Availability) is the probability, that the
system satisfies its safety and liveness predicate as t approaches infinity
A= lim A.

t—voo

| A\

Definition
Limiting Window Availability (I;) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i + 1
calculation steps.

t+i
I,-:tli_>m Y p(VK,O<k<j:ck P Nci|=P)

Definition
Limiting Window Availability Sequence (LWAS) is the infinite sequence of
limiting window availabilities LWAS = (I, 1,...).

|
| \
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Decomposition of Markov Chains

Current Focus

System Definition (Ingredients)

v

System structure (processes and communication channels)

» Communication model (shared memory or message passing)

v

Variable domains

v

Algorithm
Scheduler
Fault model

v

v
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Decomposition of Markov Chains

Current Focus

Self Stabilization

A system is self-stabilizing if and only if:

Starting from any state, it is guaranteed that the system will
eventually reach a state that satisfies the safety
predicate(convergence).

Given that the system satisfies the safety predicate, it is guaranteed
to stay in a state that satisfies the safety predicate, provided that no
fault happens (closure).

v

Dolev, Shlomi (2000), Self-Stabilization, MIT Press, ISBN 0-262-04178-2.
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Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 1/8

» Three process system

®-C-O

(a) = root (b) (c)

» Equi-probabilistic scheduler electing one process per cycle
» Three values (frue, false and dk (don’t know))

» Fault model: transient faults with probability g = 0.01

» Simple broadcast algorithm

11/30
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Example 2/8 : the Root Algorithm

Repeat
true — reg := true
end.
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Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 3/8 : the Non-Root Algorithm

define vector := {reg; | proc; € neighbors}

Repeat
—((false € vector)xor(true € vector)) —
reg .= dk
O((false € vector) A —(true € vector)) —
reg = false
O((true € vector) \ —(false € vector)) —
reg := true
end.
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Markov Chain made with tool jAndrej by Fabian Griining
Now we can calculate the steady state probability distribution
and the limiting availability

and with a small alteration the Limiting Window Availability.
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Definition

Limiting Window Availability (I;) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within j+ 1
calculation steps.

t+i
,-:tlim Y p(VK,O<k<j:ck P Nci|=P)
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Current Focus

Example 5/8 : Using the Markov Chain to Calculate the LTR

Just five small steps to go...
Calculate the steady state probability distribution
Erase all transitions originating from state (0,0,0) and
add transition p(((0,0,0),(0,0,0))) =1
to take care of ,a system will have satisfied &2 within i calculation
steps*

Calculate the probability distribution for each time step
while the initial probability distribution is given by the former steady
state distribution
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Current Focus

Example 6/8 : LWAS

ltimestep/state— | (0,0,0)

0.935981
0.945341
0.951612
0.956386
0.960342
0.963783
0.966854
0.969629
0.972154
0.974459
0.976569
0.978501

- 2 OO NO O~ WN-—=O

- O
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Example 7/8 : The Relative Increase of Availability over Time

LTR of the Three Process Example system
The First Twenty Timesteps
0,010

0,009
0,008
0,007
0,006
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0,002
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Probability Mass Increase

Time Steps

» The Increase of probability that the system has satisfied the safety
predicate within i steps
» How long would you wait for a system to be up (¢ = &) again?
» Minimum availability reached?
» Until increase is too low?
» Can systems have significant spots? %0
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Example 8/8 : Example System with Significant Spot

Simulation, 8 Processes, BFS, 1,000,000 Steps
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Current Focus

Markov Chain Abstraction and Decomposition

» We have the LWAS

» We can decrease the level of detail of the Markov Chain to better
recognize contexts (abstraction, cf. [Kli10])

» We can try to cope with large systems that suffer from state space
explosion (decomposition, cf. [Mal93])
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Current Focus

Abstraction of Markov Chains 2/3

» Combine states that have something in common to subsets like. . .
» ...the number of correct processes
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Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Abstraction of Markov Chains 3/3
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Jtimestep/state— 0 1 2 3

0.935981 | 0.028363 | 0.032848 | 0.002808
0.945341 | 0.019003 | 0.032848 | 0.002808
0.951612 | 0.014466 | 0.031115 | 0.002808
0.956386 | 0.011989 | 0.028867 | 0.002759
0.960342 | 0.010429 | 0.026567 | 0.002663
0.963783 | 0.009304 | 0.024379 | 0.002533
0.966854 | 0.008409 | 0.022352 | 0.002385

oo ok WD = O

Table: Probability Mass Distribution over Time (0 Column Equals LWAS)
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Current Focus

Decomposition of Markov Chains

>

If the system is too large to handle

v

split it into managable subsystems,

v

calculate each subsystems LWAS and

v

take propagation between subsystems into account.
But how?

v
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Decomposition of Markov Chains

» Each subsystem gets input (and sometimes faults) propagated from
neighbors

» Each possible input from that neighbor has a probability to occur

» Case distinction: for each possible input, how would the subsystem
behave?

» Build appropriate Markov chain
» According to input probability link all these Markov chains
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Example of Calculating the LWAS
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Current Focus

Challenges

» Accuracy issues!
» Cyclic dependencies
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Progress So Far
Conclusion and Outlook ToDo List

ToDo List

» Complete Decomposition
» Build framework that automatically finds set of favorable trade-offs
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Questions?
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