Unmasking Fault Tolerance

Masking vs. Non-masking Fault-tolerant Systems

Nils Millner

University of Oldenburg - Graduiertenkolleg TrustSoft
7. Juli 2010

Trustworthy
Software Systems

Certification

(LAY

Component Technology

Contents

Introduction
m Fault Tolerance
m Problem Statement

Current Focus

m Example of Calculating the LWAS
m Abstraction of Markov Chains

m Decomposition of Markov Chains

Conclusion and Outlook
m Progress So Far
m ToDo List

30

Introduction
Fault Tolerance
Problem Statement

Redundancy

Spatial and Temporal

» Fault tolerance demands redundancy

30

Introduction
Fault Tolerance
Problem Statement

Redundancy

Spatial and Temporal

» Fault tolerance demands redundancy
» either spatial redundancy (coding theory)

30

Introduction
Fault Tolerance
Problem Statement

Redundancy

Spatial and Temporal

» Fault tolerance demands redundancy

» either spatial redundancy (coding theory)
» or temporal redundancy (re-requests)

30

Introduction
Fault Tolerance
Problem Statement

Redundancy

Spatial and Temporal

» Fault tolerance demands redundancy
» either spatial redundancy (coding theory)
» or temporal redundancy (re-requests)
> or a mix (re-requests with error detection)

Introduction
Fault Tolerance
Problem Statement

Redundancy

Spatial and Temporal

» Fault tolerance demands redundancy

» either spatial redundancy (coding theory)
» or temporal redundancy (re-requests)
> or a mix (re-requests with error detection)

» Coding theory already widely discussed

Introduction
Fault Tolerance
Problem Statement

Redundancy

Spatial and Temporal

» Fault tolerance demands redundancy

» either spatial redundancy (coding theory)
» or temporal redundancy (re-requests)
> or a mix (re-requests with error detection)

» Coding theory already widely discussed

» Temporal redundancy and combination in current focus

Introduction
Fault Tolerance
Problem Statement

Liveness and Safety

] | safe — safe

live masking | non-masking
- live || failsafe

Introduction
Fault Tolerance
Problem Statement

Liveness and Safety

] | safe — safe

live masking | non-masking
- live || failsafe

» Focus on live systems, so liveness is not an issue here

Introduction
Fault Tolerance
Problem Statement

Liveness and Safety

] | safe — safe

live masking | non-masking
- live || failsafe

» Focus on live systems, so liveness is not an issue here
» Safety is an issue

Introduction
Fault Tolerance
Problem Statement

Liveness and Safety

] | safe — safe

live masking | non-masking
- live || failsafe

» Focus on live systems, so liveness is not an issue here
» Safety is an issue
» Focus: systems that are always live, but not always safe!

request response % request response ./

system maximal

user time

fault

masker ARARAN: plv
Prererey (]
EEEEEE Li]

system ‘ k +1 k42 kw ‘ ‘ k k+t ‘

(@) (b)
4 service unavailable /. service available

Introduction
Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

fault tolerance

Introduction
Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

masking nonmasking fault tolerance

Introduction
Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking nonmasking fault tolerance

Introduction
Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking = nonmasking fault tolerance

Introduction
Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking <==- nonmasking fault tolerance

Introduction
Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking <==- nonmasking fault tolerance
The degree of fault masking is a desired quantity that costs.

Introduction
Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking <==- nonmasking fault tolerance
The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

Introduction
Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking <==- nonmasking fault tolerance
The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

» What trade-off solutions are possible?

Introduction
Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking <==- nonmasking fault tolerance
The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

» What trade-off solutions are possible?

» We must calculate one to show how much we pay for which degree
of masking fault tolerance

Introduction
Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking <==- nonmasking fault tolerance
The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

» What trade-off solutions are possible?

» We must calculate one to show how much we pay for which degree
of masking fault tolerance

» Which of them are favorable (Pareto optimal)?

Introduction
Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

Introduction
Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

» Intel developing Palisades

Introduction
Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

Resilient Processors:
Self-Tuning Core

> 1.4GHz CPU gets additional Circuit Research Lab, Hillsboro, Oregaj
EDC Enhanc_ing energy efficiency through
dynamic variation tolerance
= Detect and carrect errors due to dynamic variations
= Eliminate guardbands to improve energy & performance
= Processor “self-tunes to adapt to any environment

45nm Resilient Processor

jeleliad

Instruction Cache

Resilientcore:

Registerfie

Energy vs. Throughput

=

o

Total Energy (mJ)

“un 02 04 06 08 1012
Throughput (BIPS)

1t

el
Research at I e

presented DY Intel

Introduction
Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

Resilient Processors:

Self-Tuning Core
. Circuit R i
» 1.4GHz CPU gets additional pah L2t HiST
Enhancing energy efficiency throu
3 gh
EDC dynamic variation tolerance
» Capab|e to handle up to 8 = Detect and carrect errors due to dynamic variations
. . = Eliminate guardbands to improve energy & performance
m|”|0n addltlonal faUItS per = Processor “self-tunes" to adapt to any environment
Second 45nm Resilient Processor

jgjelole

Instruction Cache

Resilientcore:

Energy vs. Throughput

BB

Total Energy (mJ)
S m s

Mun 02 04 06 08 1012
Throughput (BIPS) ’

1t

el
Research at Inm’s e

presented DY Intel

Introduction
Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

Resilient Processors:

Self-Tuning Core
. Circuit R i
» 1.4GHz CPU gets additional e L24 HES
Enhancing energy efficiency throu
3 gh
EDC dynamic variation tolerance
» Capab|e to handle up to 8 = Detect and carrect errors due to dynamic variations
. . = Eliminate guardbands to improve energy & performance
m|”|0n addltlonal faUItS per = Processor “self-tunes" to adapt to any environment
Second 45nm Resilient Processor

» Fault frequency increases by

Instruction Cache

laln
alelelelol

Resilientcore:

=

Total Energy (mJ)
By

Mun 02 04 06 08 1012
Throughput (BIPS) ’

1t

el
Researth e e

presented DY Intel

Introduction
Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

Resilient Processors:

Self-Tuning Core
. Circuit R i
» 1.4GHz CPU gets additional e L24 HES
Enhancing energy efficiency throu
3 gh
EDC dynamic variation tolerance
» Capab|e to handle up to 8 = Detect and carrect errors due to dynamic variations
. . = Eliminate guardbands to improve energy & performance
m|”|0n addltlonal faUItS per = Processor “self-tunes" to adapt to any environment
Second 45nm Resilient Processor

» Fault frequency increases by
» undervolting

Instruction Cache

laln
alelelelol

Resilientcore:

=

Total Energy (mJ)
By

Mun 02 04 06 08 1012
Throughput (BIPS) ’

1t

el
Researth e e

presented DY Intel

Introduction
Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

Resilient Processors:

Self-Tuning Core
. Circuit R i
» 1.4GHz CPU gets additional e L24 HES
Enhancing energy efficiency throu
3 gh
EDC dynamic variation tolerance
» Capab|e to handle up to 8 = Detect and carrect errors due to dynamic variations
. . = Eliminate guardbands to improve energy & performance
m|”|0n addltlonal faUItS per = Processor “self-tunes" to adapt to any environment
Second 45nm Resilient Processor

» Fault frequency increases by

» undervolting
» overvolting E

Instruction Cache

laln
alelelelol

Resilientcore:

=

Total Energy (mJ)
By

Mun 02 04 06 08 1012
Throughput (BIPS) ’

1t

el
Researth e e

presented DY Intel

Introduction
Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

Resilient Processors:

SeIf-Tuning Core
. Circuit R i
1.4GHz CPU gets additional -
Enhancing energy efficiency throu
3 gh
EDC dynamic variation tolerance
» Capab|e to handle up to 8 = Detect and carrect errors due to dynamic variations
. . = Eliminate guardbands to improve energy & performance
m|”|0n addltlonal faUItS per = Processor “self-tunes" to adapt to any environment
Second 45nm Resilient Processor

» Fault frequency increases by

» undervolting
» overvolting E

laln
alelelelol

g]

Instruction Cache

Resilientcore:

» either save energy or increase

Energy vs. Throughput

=

Total Energy (mJ)
By

Mun 02 04 06 08 1012
Throughput (BIPS) ’

1t

el
Researth e e

presented DY Intel

Introduction
Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

Resilient Processors:

SeIf-Tuning Core
. Circuit R i
1.4GHz CPU gets additional -
Enhancing energy efficiency throu
3 gh
EDC dynamic variation tolerance
» Capab|e to handle up to 8 = Detect and carrect errors due to dynamic variations
. . = Eliminate guardbands to improve energy & performance
m|”|0n addltlonal faUItS per = Processor “self-tunes" to adapt to any environment
Second 45nm Resilient Processor

» Fault frequency increases by

» undervolting
» overvolting E

laln
alelelelol

g]

Instruction Cache

Resilientcore:

» either save energy or increase

Energy vs. Throughput

=

» cheap

Total Energy (mJ)
By

Mun 02 04 06 08 1012
Throughput (BIPS) ’

1t

el
Researth e e

presented DY Intel

Introduction

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

1.4GHz CPU gets additional

Resilient Processors:
Self-Tuning Core
Circuit Research Lab, Hillsboro, Orega

EDC
» Capable to handle up to 8
million additional faults per
second
» Fault frequency increases by
» undervolting
» overvolting
» either save energy or increase
» cheap
» early stage already
implemented in Core i5 and
Corei7

Enhancing energy efficiency through
dynamic variation tolerance

= Detect and carrect errors due to dynamic variations

= Eliminate guardbands to improve energy & performance
= Processor “self-tunes to adapt to any environment

45nm Resilient Processor

Ialalnlalals
L

Instruction Cache

Resilientcore:

Energy vs. Throughput

A wﬂ“‘"“’
« /

<ame enegy
1 Tiherperomance 3L 2

=

Total Energy (mJ)
= E T

" 1.0 12
00 02 0.4 06 0.8 1.
mmugnpm(srPS) @
—
tel E‘
Research at Inms i =

presented DY Intel

Introduction
Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

» Intel developing Palisades
» Measure of cost: time, energy, . ..

30

Introduction
Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

» Intel developing Palisades
» Measure of cost: time, energy, . ..
» Measure of quality: availability

30

Introduction
Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

Intel developing Palisades

Measure of cost: time, energy, . ..

Measure of quality: availability

Basically, wherever certain classes of faults occur, liveness is
guaranteed and masking of faults costs something

vV vyVvYyy

Introduction
Fault Tolerance
Problem Statement

System Paramters and the Degree of Masking

» We look at parametric systems

Introduction
Fault Tolerance
Problem Statement

System Paramters and the Degree of Masking

» We look at parametric systems
» What parameter values give the best trade-off?

30

Introduction
Fault Tolerance
Problem Statement

System Paramters and the Degree of Masking

» We look at parametric systems
» What parameter values give the best trade-off?
» Each possible system configuration has a certain degree of masking

Introduction
Fault Tolerance
Problem Statement

System Paramters and the Degree of Masking

>

We look at parametric systems

v

What parameter values give the best trade-off?

v

Each possible system configuration has a certain degree of masking
» How to compute the degree of masking for a system configuration?

Introduction
Fault Tolerance
Problem Statement

Limiting (Window) Availability

Definition

Limiting Availability (or Steady State Availability) is the probability, that the
system satisfies its safety and liveness predicate as t approaches infinity
A= lim A.

t—voo

Introduction

Fault Tolerance
Problem Statement

Limiting (Window) Availability

Definition

Limiting Availability (or Steady State Availability) is the probability, that the
system satisfies its safety and liveness predicate as t approaches infinity
A= lim A.

t—voo

| \

Definition
Limiting Window Availability (I;) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i + 1
calculation steps.

A,

8/30

Introduction
Fault Tolerance
Problem Statement

Limiting (Window) Availability

Limiting Availability (or Steady State Availability) is the probability, that the
system satisfies its safety and liveness predicate as t approaches infinity

A= lim A,
t—so0
v

Limiting Window Availability (I;) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i + 1
calculation steps.

t+i
I,-:tli_>m Y p(VK,O<k<j:ck P Nci|=P)

A,

8

30

Introduction

Fault Tolerance
Problem Statement

Limiting (Window) Availability

Definition

Limiting Availability (or Steady State Availability) is the probability, that the
system satisfies its safety and liveness predicate as t approaches infinity
A= lim A.

t—voo

| A\

Definition
Limiting Window Availability (I;) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i + 1
calculation steps.

t+i
I,-:tli_>m Y p(VK,O<k<j:ck P Nci|=P)

Definition
Limiting Window Availability Sequence (LWAS) is the infinite sequence of
limiting window availabilities LWAS = (I, 1,...).

|
| \

30

\
&

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

System Definition (Ingredients)

v

System structure (processes and communication channels)

» Communication model (shared memory or message passing)

v

Variable domains

v

Algorithm
Scheduler
Fault model

v

v

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Self Stabilization

A system is self-stabilizing if and only if:

v

Dolev, Shlomi (2000), Self-Stabilization, MIT Press, ISBN 0-262-04178-2.

10/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Self Stabilization

A system is self-stabilizing if and only if:

Starting from any state, it is guaranteed that the system will
eventually reach a state that satisfies the safety
predicate(convergence).

v

Dolev, Shlomi (2000), Self-Stabilization, MIT Press, ISBN 0-262-04178-2.

10/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Self Stabilization

A system is self-stabilizing if and only if:

Starting from any state, it is guaranteed that the system will
eventually reach a state that satisfies the safety
predicate(convergence).

Given that the system satisfies the safety predicate, it is guaranteed
to stay in a state that satisfies the safety predicate, provided that no
fault happens (closure).

v

Dolev, Shlomi (2000), Self-Stabilization, MIT Press, ISBN 0-262-04178-2.

10/30

Example of Calculating the LWAS
A tion of Markov Chains
Decomposition kov Chains

Current Focus

Example 1/8

» Three process system

11/30

Example of Calculating the LWAS
A tion of Markov Chains
Decomposition kov Chains

Current Focus

Example 1/8

» Three process system

®-C-O

(a) = root (b) (c)

11/30

Example of Calculating the LWAS
Abstraction of M Chains
Decomposition of kov Chains

Current Focus

Example 1/8

» Three process system

®-C-O

(a) = root (b) (c)

» Equi-probabilistic scheduler electing one process per cycle

11/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 1/8

» Three process system

®-C-O

(a) = root (b) (c)

» Equi-probabilistic scheduler electing one process per cycle
» Three values (frue, false and dk (don’t know))

11/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 1/8

» Three process system

®-C-O

(a) = root (b) (c)

» Equi-probabilistic scheduler electing one process per cycle
» Three values (frue, false and dk (don’t know))

» Fault model: transient faults with probability g = 0.01

» Simple broadcast algorithm

11/30

Example of Calculating the LWAS
Abstraction of Mal hains
Decomposition of Markov Chains

Current Focus

Example 2/8 : the Root Algorithm

Repeat
true — reg := true
end.

12/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 3/8 : the Non-Root Algorithm

define vector := {reg; | proc; € neighbors}

Repeat
—((false € vector)xor(true € vector)) —
reg .= dk
O((false € vector) A —(true € vector)) —
reg = false
O((true € vector) \ —(false € vector)) —
reg := true
end.

13/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 4/8 : State Space and Markov Chain

333334

=

[k}
0.9a¥ap000001

T0#R3333333

0j00Ng3333333

0.0p#333333333 o)

333
0.00 866666667

333334 03
i o
-
3333333

R S FEREE
= 0.330BEEEREEET 0.6
s6ip000000 00533) ks a33aame E;X 066866666667 - K 212 21 222

Ty B S . T
0 0 0348333323333 0.000B6BE66E67

3333333

0 = true, 1 = dk, 2 = false
Markov Chain made with tool jAndrej by Fabian Griining

14/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 4/8 : State Space and Markov Chain

0 zxsjamaa
[k}
0.9a¥ap000001
200

T0#R3333333

ooy 0/003833333333

S) 06
s A 7= 42
sofgoonogy | PR poMaaasaen E;X 066860068807 - 217 21
NG T Wa\aiga/wﬂ s SEEEE T3
[sEEEEES TIM333333 o.00¥ess0s667

0 = true, 1 = dk, 2 = false
Markov Chain made with tool jAndrej by Fabian Griining
Now we can calculate the steady state probability distribution

14/30

Current Focus Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 4/8 : State Space and Markov Chain

[11‘35333334
73
200
0.7

0.9a¥ap000001
T0#R3333333
053000000t
0j00Ng3333333
s 0.0p#333333333 o)
0344 . R ——
4

. ceRFvEET T

&55555557
20

1IR30

0.339BEEE8EE67 067
221

, .
0.664233333338 4 &

se¥io000000 SRR E;X
Ty ST T L
. o.00¥ess0s667

EEREEEE] TIAR2333333

0 = true, 1 = dk, 2 = false
Markov Chain made with tool jAndrej by Fabian Griining
Now we can calculate the steady state probability distribution

and the limiting availability

14/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 4/8 : State Space and Markov Chain

0 zxsjamaa
[k}
0.9a¥ap000001
200
0.7

T0#R3333333
053000000t
ooy 0/003833333333
s > 0.0p#333333333 o)

I ————y /7
< P — 0 e
0.004H6E6BEEET

33333334 03
S S
3333333
NP < CEEEE:
s o s ¥aasasssr 057

sofgoonony PO s Y SF L B 212 3

[N ST ST vaspassanzse e

o 3333333 0379333333333 0.00AB66EEEEE7

0 = true, 1 = dk, 2 = false

Markov Chain made with tool jAndrej by Fabian Griining
Now we can calculate the steady state probability distribution
and the limiting availability

and with a small alteration the Limiting Window Availability.

14/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 4/8 : State Space and Markov Chain

0 zxsjamaa
[k}

T0#R3333333
200
053000000t
0. 0j00Ng3333333
0.0p#333333333 o)

I < A A
- g | BT
& o0g¥seecseer
s, SEEECC
o 20
fao

R S FEREE

0.9a¥ap000001

o ~ 0.334566686667 0.6
P \ 3 i
() D i SR seabasoancor M 72 &
DN ST g ves¥ansasan [corered
o 3333333 0379333333333 0.00AB66EEEEE7

Definition

Limiting Window Availability (I;) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within j+ 1
calculation steps.

t+i
,-:tlim Y p(VK,O<k<j:ck P Nci|=P)

—>°°]‘:t

14/30

Just five small steps to go...

15/30

Example of Calculating the LWAS
Abstraction of M v Chains
Decomposition o rkov Chains

Current Focus

Example 5/8 : Using the Markov Chain to Calculate the LTR

Just five small steps to go...
Calculate the steady state probability distribution

15/30

Example of Calculating the LWAS
Abstraction of M v Chains
Decomposition o rkov Chains

Current Focus

Example 5/8 : Using the Markov Chain to Calculate the LTR

Just five small steps to go...
Calculate the steady state probability distribution
Erase all transitions originating from state (0,0,0) and
add transition p(((0,0,0),(0,0,0))) =1
to take care of ,a system will have satisfied &2 within i calculation
steps*

15/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 5/8 : Using the Markov Chain to Calculate the LTR

Just five small steps to go...
Calculate the steady state probability distribution
Erase all transitions originating from state (0,0,0) and
add transition p(((0,0,0),(0,0,0))) =1
to take care of ,a system will have satisfied &2 within i calculation
steps*

Calculate the probability distribution for each time step
while the initial probability distribution is given by the former steady
state distribution

15/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 6/8 : LWAS

ltimestep/state— | (0,0,0)

0.935981
0.945341
0.951612
0.956386
0.960342
0.963783
0.966854
0.969629
0.972154
0.974459
0.976569
0.978501

- 2 OO NO O~ WN-—=O

- O

16/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 7/8 : The Relative Increase of Availability over Time

Probability Mass Increase

0,010
0,009
0,008
0,007
0,006
0,005
0,004
0,003
0,002
0,001

0,000

1

LTR of the Three Process Example system
The First Twenty Timesteps

2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20
Time Steps

17/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 7/8 : The Relative Increase of Availability over Time

LTR of the Three Process Example system
The First Twenty Timesteps
0,010

0,009
0,008
0,007
0,006
0,005

0,004

0,003

0,002

I 1111

0,000 I I I
9

w 11 |2 13 14 15 16 17 18 19 20

Probability Mass Increase

Time Steps

» The Increase of probability that the system has satisfied the safety
predicate within i steps

17/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 7/8 : The Relative Increase of Availability over Time

LTR of the Three Process Example system
The First Twenty Timesteps
0,010

0,009
0,008
0,007
0,006
0,005

0,004

0,003

0,002

I 1111

0,000 I I I
9

w 11 |2 13 14 15 16 17 18 19 20

Probability Mass Increase

Time Steps

» The Increase of probability that the system has satisfied the safety

predicate within i steps
» How long would you wait for a system to be up (¢ = &) again?

17/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 7/8 : The Relative Increase of Availability over Time

LTR of the Three Process Example system
The First Twenty Timesteps
0,010

0,009
0,008
0,007
0,006
0,005

0,004

0,003

0,002

I 1111

0,000 I I I
9

w 11 |2 13 14 15 16 17 18 19 20

Probability Mass Increase

Time Steps

» The Increase of probability that the system has satisfied the safety

predicate within i steps
» How long would you wait for a system to be up (¢ = &) again?
» Minimum availability reached?

17/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 7/8 : The Relative Increase of Availability over Time

LTR of the Three Process Example system
The First Twenty Timesteps
0,010

0,009
0,008
0,007
0,006
0,005

0,004

0,003

0,002

I 1111

0,000 I I I
9

w 11 |2 13 14 15 16 17 18 19 20

Probability Mass Increase

Time Steps

» The Increase of probability that the system has satisfied the safety

predicate within i steps
» How long would you wait for a system to be up (¢ = &) again?
» Minimum availability reached?
> Until increase is too low?

17/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Example 7/8 : The Relative Increase of Availability over Time

LTR of the Three Process Example system
The First Twenty Timesteps
0,010

0,009
0,008
0,007
0,006
0,005

0,004

0,003

0,002

I 1111

0,000 I I I
9

w 11 |2 13 14 15 16 17 18 19 20

Probability Mass Increase

Time Steps

» The Increase of probability that the system has satisfied the safety
predicate within i steps
» How long would you wait for a system to be up (¢ = &) again?
» Minimum availability reached?
» Until increase is too low?
» Can systems have significant spots? %0

Current Focus /Example of Calculating the LWAS

Example 8/8 : Example System with Significant Spot

Simulation, 8 Processes, BFS, 1,000,000 Steps

o
w
=3

Fault Probability
=001
0.02
v 0.03
- 0.04
+0.05
<1 0.06
*¢0.07
%0.08
=009
©0.1

o
N
a

3

o
)
=)

Probability Mass Increase (x10)
o
o

12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Time Steps

18/30

Example of Calculating the LWAS
Abstraction of M v Chains
Decomposition o rkov Chains

Current Focus

Markov Chain Abstraction and Decomposition

» We have the LWAS

19/30

Example of Calculating the LWAS
Abstraction of M v Chains
Decomposition o rkov Chains

Current Focus

Markov Chain Abstraction and Decomposition

» We have the LWAS

» We can decrease the level of detail of the Markov Chain to better
recognize contexts (abstraction, cf. [Kli10])

19/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Markov Chain Abstraction and Decomposition

» We have the LWAS

» We can decrease the level of detail of the Markov Chain to better
recognize contexts (abstraction, cf. [Kli10])

» We can try to cope with large systems that suffer from state space
explosion (decomposition, cf. [Mal93])

19/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Abstraction of Markov Chains 1/3

>

System Definition

v

State Space

Build Markov Chain
Abstract Markov Chain
Analyze the LWAS

v

v

v

20/30

Example of Calculating the LWAS
Abstraction of M: Chains
Decomposition of Markov Chains

Current Focus

Abstraction of Markov Chains 2/3

» Combine states that have something in common to subsets like. . .

21/30

Example of Calculating the LWAS
Abstraction of M: Chains
Decomposition of Markov Chains

Current Focus

Abstraction of Markov Chains 2/3

» Combine states that have something in common to subsets like. . .
» ...the number of correct processes

21/30

mple of Calculating the LWAS
Abstractlon of Markov Chains
Decomposition of Markov Chains

Current Focus

Abstraction of Markov Chains 3/3

[333334
73
0.9a¥Rg000001
TOR33333333
200
5300000001
5 o) o o[00Rg3333333
g
5 033N TTMea33333 .
0.558100nG000 0.09#33333333 o
(AL cEEF EC = & 33230
Vi 03 o o0g¥seecssol
033 : E] oy 7 o
@ EEEEE] 020 -
001 00 10 0.33%33333333
0333833333833 0
= EEEREE
EFEEEeE
Uicxiiy)] 0.33%8086667 0.67

a¥0000000 ODESSITIH) okanadm ;X 0.66%B6666857 r p 212 a 422

"”\“m_//ma\”f—if/“““ ssaa33¢ e

oM TIA333333 0.000BEBEBEE?
SsEL e

22/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Abstraction of Markov Chains 3/3

> > =
|
) a -
= v . ¥ ¥

Jtimestep/state— 0 1 2 3

0.935981 | 0.028363 | 0.032848 | 0.002808
0.945341 | 0.019003 | 0.032848 | 0.002808
0.951612 | 0.014466 | 0.031115 | 0.002808
0.956386 | 0.011989 | 0.028867 | 0.002759
0.960342 | 0.010429 | 0.026567 | 0.002663
0.963783 | 0.009304 | 0.024379 | 0.002533
0.966854 | 0.008409 | 0.022352 | 0.002385

oo ok WD = O

Table: Probability Mass Distribution over Time (0 Column Equals LWAS)

23/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Decomposition of Markov Chains

» If the system is too large to handle

24/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Decomposition of Markov Chains

» If the system is too large to handle
» split it into managable subsystems,

24/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Decomposition of Markov Chains

» If the system is too large to handle
» split it into managable subsystems,
» calculate each subsystems LWAS and

24/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Decomposition of Markov Chains

>

If the system is too large to handle

v

split it into managable subsystems,

v

calculate each subsystems LWAS and

v

take propagation between subsystems into account.
But how?

v

24/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Decomposition of Markov Chains

» Each subsystem gets input (and sometimes faults) propagated from
neighbors

25/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Decomposition of Markov Chains

» Each subsystem gets input (and sometimes faults) propagated from
neighbors

» Each possible input from that neighbor has a probability to occur

25/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Decomposition of Markov Chains

» Each subsystem gets input (and sometimes faults) propagated from
neighbors

» Each possible input from that neighbor has a probability to occur

» Case distinction: for each possible input, how would the subsystem
behave?

25/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Decomposition of Markov Chains

» Each subsystem gets input (and sometimes faults) propagated from
neighbors
» Each possible input from that neighbor has a probability to occur

» Case distinction: for each possible input, how would the subsystem
behave?

» Build appropriate Markov chain

25/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Decomposition of Markov Chains

» Each subsystem gets input (and sometimes faults) propagated from
neighbors

» Each possible input from that neighbor has a probability to occur

» Case distinction: for each possible input, how would the subsystem
behave?

» Build appropriate Markov chain
» According to input probability link all these Markov chains

25/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Challenges

» Accuracy issues!

26/30

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Current Focus

Challenges

» Accuracy issues!
» Cyclic dependencies

26/30

Progress So Far
Conclusion and Outlook ToDo List

Progress So Far

» Redundancy in time/space

27/30

Progress So Far
Conclusion and Outlook ToDo List

Progress So Far

» Redundancy in time/space
» Unmasking fault tolerance

27/30

Conclusion and Outlook

Progress So Far

» Redundancy in time/space
» Unmasking fault tolerance
> Metric: LWAS

Progress So Far
ToDo List

27/30

Progress So Far
Conclusion and Outlook ToDo List

Progress So Far

v

Redundancy in time/space

v

Unmasking fault tolerance
Metric: LWAS
Calculation of LWAS

v

v

27/30

Progress So Far
Conclusion and Outlook ToDo List

Progress So Far

v

Redundancy in time/space

v

Unmasking fault tolerance
Metric: LWAS

Calculation of LWAS
Markov chain abstraction

v

v

v

27/30

Progress So Far
Conclusion and Outlook ToDo List

Progress So Far

v

Redundancy in time/space

v

Unmasking fault tolerance
Metric: LWAS

Calculation of LWAS
Markov chain abstraction

v

v

v

v

Markov chain decomposition

27/30

Progress So Far
Conclusion and Outlook ToDo List

ToDo List

» Complete Decomposition

28/30

Progress So Far
Conclusion and Outlook ToDo List

ToDo List

» Complete Decomposition
» Build framework that automatically finds set of favorable trade-offs

28/30

Questions?

29/30

Bibliography

[Mal93]

[KIi10]

[MDTO9]

Manish Malhotra.

Specification and Solution of Dependability Models of Fault-tolerant
Systems.

PhD thesis, Durham, NC, USA, 1993.

Daniel Klink.
Three-valued Abstraction for Stochastic Systems.
PhD thesis, RWTH Aachen, Mar 2010.

Nils Maliner, Abhishek Dhama, and Oliver Theel.

Deriving a Good Trade-off Between System Availability and Time
Redundancy.

In Proceedings of the Symposia and Workshops on Ubiquitious,
Automatic and Trusted Computing, number E3737, pages 61-67.
IEEE Computer Society Press, July 2009.

30/30

	Introduction
	Fault Tolerance
	Problem Statement

	Current Focus
	Example of Calculating the LWAS
	Abstraction of Markov Chains
	Decomposition of Markov Chains

	Conclusion and Outlook
	Progress So Far
	ToDo List

	
	Bibliography

