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Liveness and Safety

safe ¬ safe

live masking non-masking
¬ live failsafe

I Focus on live systems, so liveness is not an issue here
I Safety is an issue
I Focus: systems that are always live, but not always safe!
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Between masking⇐⇒ nonmasking

fault tolerance

The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

I What trade-off solutions are possible?

I We must calculate one to show how much we pay for which degree
of masking fault tolerance

I Which of them are favorable (Pareto optimal)?
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Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .
I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by

I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7
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I Each possible system configuration has a certain degree of masking
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Limiting (Window) Availability

Definition
Limiting Availability (or Steady State Availability) is the probability, that the
system satisfies its safety and liveness predicate as t approaches infinity
A = lim

t→∞
At .

Definition
Limiting Window Availability (li ) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i +1
calculation steps.

li = lim
t→∞

t+i
∑
j=t

p(∀k ,0≤ k < j : ck 6|= P ∧ cj |= P)

Definition
Limiting Window Availability Sequence (LWAS) is the infinite sequence of
limiting window availabilities LWAS = 〈l0, l1, . . .〉.
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Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

System Definition (Ingredients)

I System structure (processes and communication channels)

I Communication model (shared memory or message passing)

I Variable domains

I Algorithm

I Scheduler

I Fault model
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Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Self Stabilization

Definition
A system is self-stabilizing if and only if:

1 Starting from any state, it is guaranteed that the system will
eventually reach a state that satisfies the safety
predicate(convergence).

2 Given that the system satisfies the safety predicate, it is guaranteed
to stay in a state that satisfies the safety predicate, provided that no
fault happens (closure).

Dolev, Shlomi (2000), Self-Stabilization, MIT Press, ISBN 0-262-04178-2.
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Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 1/8

I Three process system

(a) = root (b) (c)

I Equi-probabilistic scheduler electing one process per cycle

I Three values (true, false and dk (don’t know))

I Fault model: transient faults with probability q = 0.01

I Simple broadcast algorithm
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Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 2/8 : the Root Algorithm
Repeat

true→ reg := true
end.
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Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 3/8 : the Non-Root Algorithm

define vector := {reg i | proc i ∈ neighbors}
Repeat
¬((false ∈ vector)xor(true ∈ vector))→
reg := dk
�((false ∈ vector)∧¬(true ∈ vector))→

reg := false
�((true ∈ vector)∧¬(false ∈ vector))→

reg := true
end.

13 / 30
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Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 4/8 : State Space and Markov Chain

0 = true, 1 = dk , 2 = false
Markov Chain made with tool jAndrej by Fabian Grüning

Now we can calculate the steady state probability distribution
and the limiting availability
and with a small alteration the Limiting Window Availability.

Definition
Limiting Window Availability (li ) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i +1
calculation steps.

li = lim
t→∞

t+i
∑
j=t

p(∀k ,0≤ k < j : ck 6|= P ∧ cj |= P)
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Example 5/8 : Using the Markov Chain to Calculate the LTR

Just five small steps to go...

1 Calculate the steady state probability distribution

2 Erase all transitions originating from state 〈0,0,0〉 and

3 add transition p((〈0,0,0〉,〈0,0,0〉)) = 1

4 to take care of „a system will have satisfied P within i calculation
steps“

5 Calculate the probability distribution for each time step
while the initial probability distribution is given by the former steady
state distribution
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Example 6/8 : LWAS

↓timestep/state→ 〈0,0,0〉
0 0.935981
1 0.945341
2 0.951612
3 0.956386
4 0.960342
5 0.963783
6 0.966854
7 0.969629
8 0.972154
9 0.974459
10 0.976569
11 0.978501
. . . . . .
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Example 7/8 : The Relative Increase of Availability over Time
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I The Increase of probability that the system has satisfied the safety
predicate within i steps

I How long would you wait for a system to be up (c |= P) again?

I Minimum availability reached?
I Until increase is too low?
I Can systems have significant spots?
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Example 8/8 : Example System with Significant Spot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0,00

0,05

0,10

0,15

0,20

0,25

0,30

Simulation, 8 Processes, BFS, 1,000,000 Steps

Fault Probability
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

Time Steps

Pr
ob

ab
ili

ty
 M

as
s 

In
cr

ea
se

 (x
10

)

18 / 30



Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Markov Chain Abstraction and Decomposition

I We have the LWAS

I We can decrease the level of detail of the Markov Chain to better
recognize contexts (abstraction, cf. [Kli10])

I We can try to cope with large systems that suffer from state space
explosion (decomposition, cf. [Mal93])
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Abstraction of Markov Chains 1/3

I System Definition

I State Space

I Build Markov Chain

I Abstract Markov Chain

I Analyze the LWAS
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I Combine states that have something in common to subsets like. . .

I . . . the number of correct processes
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Abstraction of Markov Chains 3/3

p(vi ,wi) =

n
∑

i=0

m
∑

j=0
p(vi ,wj) ·p(vi)

n
∑

i=0
p(vi)

(1)
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Abstraction of Markov Chains 3/3

⇒

↓timestep/state→ 0 1 2 3
0 0.935981 0.028363 0.032848 0.002808
1 0.945341 0.019003 0.032848 0.002808
2 0.951612 0.014466 0.031115 0.002808
3 0.956386 0.011989 0.028867 0.002759
4 0.960342 0.010429 0.026567 0.002663
5 0.963783 0.009304 0.024379 0.002533
6 0.966854 0.008409 0.022352 0.002385

Table: Probability Mass Distribution over Time (0 Column Equals LWAS)
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Decomposition of Markov Chains

I If the system is too large to handle

I split it into managable subsystems,

I calculate each subsystems LWAS and

I take propagation between subsystems into account.

I But how?
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Decomposition of Markov Chains

I Each subsystem gets input (and sometimes faults) propagated from
neighbors

I Each possible input from that neighbor has a probability to occur

I Case distinction: for each possible input, how would the subsystem
behave?

I Build appropriate Markov chain

I According to input probability link all these Markov chains
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Challenges

I Accuracy issues!

I Cyclic dependencies
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I Redundancy in time/space

I Unmasking fault tolerance

I Metric: LWAS
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I Markov chain abstraction

I Markov chain decomposition
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