
Unmasking Fault Tolerance
Masking vs. Non-masking Fault-tolerant Systems

Nils Müllner

University of Oldenburg - Graduiertenkolleg TrustSoft

7. Juli 2010

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Contents

1 Introduction
Fault Tolerance
Problem Statement

2 Current Focus
Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

3 Conclusion and Outlook
Progress So Far
ToDo List

2 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Redundancy
Spatial and Temporal

I Fault tolerance demands redundancy

I either spatial redundancy (coding theory)
I or temporal redundancy (re-requests)
I or a mix (re-requests with error detection)

I Coding theory already widely discussed

I Temporal redundancy and combination in current focus

3 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Redundancy
Spatial and Temporal

I Fault tolerance demands redundancy
I either spatial redundancy (coding theory)

I or temporal redundancy (re-requests)
I or a mix (re-requests with error detection)

I Coding theory already widely discussed

I Temporal redundancy and combination in current focus

3 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Redundancy
Spatial and Temporal

I Fault tolerance demands redundancy
I either spatial redundancy (coding theory)
I or temporal redundancy (re-requests)

I or a mix (re-requests with error detection)

I Coding theory already widely discussed

I Temporal redundancy and combination in current focus

3 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Redundancy
Spatial and Temporal

I Fault tolerance demands redundancy
I either spatial redundancy (coding theory)
I or temporal redundancy (re-requests)
I or a mix (re-requests with error detection)

I Coding theory already widely discussed

I Temporal redundancy and combination in current focus

3 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Redundancy
Spatial and Temporal

I Fault tolerance demands redundancy
I either spatial redundancy (coding theory)
I or temporal redundancy (re-requests)
I or a mix (re-requests with error detection)

I Coding theory already widely discussed

I Temporal redundancy and combination in current focus

3 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Redundancy
Spatial and Temporal

I Fault tolerance demands redundancy
I either spatial redundancy (coding theory)
I or temporal redundancy (re-requests)
I or a mix (re-requests with error detection)

I Coding theory already widely discussed

I Temporal redundancy and combination in current focus

3 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Liveness and Safety

safe ¬ safe

live masking non-masking
¬ live failsafe

I Focus on live systems, so liveness is not an issue here
I Safety is an issue
I Focus: systems that are always live, but not always safe!

request response

fault

masker

system

user

system

service unavailable service available

k+1k k+1k

request response

time redundancy

maximal

(a) (b)

k+2 k+w

4 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Liveness and Safety

safe ¬ safe

live masking non-masking
¬ live failsafe

I Focus on live systems, so liveness is not an issue here

I Safety is an issue
I Focus: systems that are always live, but not always safe!

request response

fault

masker

system

user

system

service unavailable service available

k+1k k+1k

request response

time redundancy

maximal

(a) (b)

k+2 k+w

4 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Liveness and Safety

safe ¬ safe

live masking non-masking
¬ live failsafe

I Focus on live systems, so liveness is not an issue here
I Safety is an issue

I Focus: systems that are always live, but not always safe!

request response

fault

masker

system

user

system

service unavailable service available

k+1k k+1k

request response

time redundancy

maximal

(a) (b)

k+2 k+w

4 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Liveness and Safety

safe ¬ safe

live masking non-masking
¬ live failsafe

I Focus on live systems, so liveness is not an issue here
I Safety is an issue
I Focus: systems that are always live, but not always safe!

request response

fault

masker

system

user

system

service unavailable service available

k+1k k+1k

request response

time redundancy

maximal

(a) (b)

k+2 k+w

4 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking⇐⇒ nonmasking

fault tolerance

The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

I What trade-off solutions are possible?

I We must calculate one to show how much we pay for which degree
of masking fault tolerance

I Which of them are favorable (Pareto optimal)?

5 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between

masking

⇐⇒

nonmasking fault tolerance

The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

I What trade-off solutions are possible?

I We must calculate one to show how much we pay for which degree
of masking fault tolerance

I Which of them are favorable (Pareto optimal)?

5 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking

⇐⇒

nonmasking fault tolerance

The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

I What trade-off solutions are possible?

I We must calculate one to show how much we pay for which degree
of masking fault tolerance

I Which of them are favorable (Pareto optimal)?

5 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking

⇐

⇒ nonmasking fault tolerance

The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

I What trade-off solutions are possible?

I We must calculate one to show how much we pay for which degree
of masking fault tolerance

I Which of them are favorable (Pareto optimal)?

5 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking⇐⇒ nonmasking fault tolerance

The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

I What trade-off solutions are possible?

I We must calculate one to show how much we pay for which degree
of masking fault tolerance

I Which of them are favorable (Pareto optimal)?

5 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking⇐⇒ nonmasking fault tolerance
The degree of fault masking is a desired quantity that costs.

Unmasking here is to find out:

I What trade-off solutions are possible?

I We must calculate one to show how much we pay for which degree
of masking fault tolerance

I Which of them are favorable (Pareto optimal)?

5 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking⇐⇒ nonmasking fault tolerance
The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

I What trade-off solutions are possible?

I We must calculate one to show how much we pay for which degree
of masking fault tolerance

I Which of them are favorable (Pareto optimal)?

5 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking⇐⇒ nonmasking fault tolerance
The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

I What trade-off solutions are possible?

I We must calculate one to show how much we pay for which degree
of masking fault tolerance

I Which of them are favorable (Pareto optimal)?

5 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking⇐⇒ nonmasking fault tolerance
The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

I What trade-off solutions are possible?

I We must calculate one to show how much we pay for which degree
of masking fault tolerance

I Which of them are favorable (Pareto optimal)?

5 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Unmasking Fault Tolerance

Between masking⇐⇒ nonmasking fault tolerance
The degree of fault masking is a desired quantity that costs.
Unmasking here is to find out:

I What trade-off solutions are possible?

I We must calculate one to show how much we pay for which degree
of masking fault tolerance

I Which of them are favorable (Pareto optimal)?

5 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .
I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by

I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades

I Measure of cost: time, energy, . . .
I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by

I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .
I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by

I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .
I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by

I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .
I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by

I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .
I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by
I undervolting

I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .
I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by
I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .
I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by
I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .
I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by
I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .
I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by
I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .

I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by

I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .
I Measure of quality: availability

I Basically, wherever certain classes of faults occur, liveness is
guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by

I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Palisades as an Example for Cost-Benefit Ratio

I Intel developing Palisades
I Measure of cost: time, energy, . . .
I Measure of quality: availability
I Basically, wherever certain classes of faults occur, liveness is

guaranteed and masking of faults costs something

I 1.4GHz CPU gets additional
EDC

I Capable to handle up to 8
million additional faults per
second

I Fault frequency increases by

I undervolting
I overvolting

I either save energy or increase

I cheap

I early stage already
implemented in Core i5 and
Core i7

6 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

System Paramters and the Degree of Masking

I We look at parametric systems

I What parameter values give the best trade-off?

I Each possible system configuration has a certain degree of masking

I How to compute the degree of masking for a system configuration?

7 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

System Paramters and the Degree of Masking

I We look at parametric systems

I What parameter values give the best trade-off?

I Each possible system configuration has a certain degree of masking

I How to compute the degree of masking for a system configuration?

7 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

System Paramters and the Degree of Masking

I We look at parametric systems

I What parameter values give the best trade-off?

I Each possible system configuration has a certain degree of masking

I How to compute the degree of masking for a system configuration?

7 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

System Paramters and the Degree of Masking

I We look at parametric systems

I What parameter values give the best trade-off?

I Each possible system configuration has a certain degree of masking

I How to compute the degree of masking for a system configuration?

7 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Limiting (Window) Availability

Definition
Limiting Availability (or Steady State Availability) is the probability, that the
system satisfies its safety and liveness predicate as t approaches infinity
A = lim

t→∞
At .

Definition
Limiting Window Availability (li) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i +1
calculation steps.

li = lim
t→∞

t+i
∑
j=t

p(∀k ,0≤ k < j : ck 6|= P ∧ cj |= P)

Definition
Limiting Window Availability Sequence (LWAS) is the infinite sequence of
limiting window availabilities LWAS = 〈l0, l1, . . .〉.

8 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Limiting (Window) Availability

Definition
Limiting Availability (or Steady State Availability) is the probability, that the
system satisfies its safety and liveness predicate as t approaches infinity
A = lim

t→∞
At .

Definition
Limiting Window Availability (li) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i +1
calculation steps.

li = lim
t→∞

t+i
∑
j=t

p(∀k ,0≤ k < j : ck 6|= P ∧ cj |= P)

Definition
Limiting Window Availability Sequence (LWAS) is the infinite sequence of
limiting window availabilities LWAS = 〈l0, l1, . . .〉.

8 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Limiting (Window) Availability

Definition
Limiting Availability (or Steady State Availability) is the probability, that the
system satisfies its safety and liveness predicate as t approaches infinity
A = lim

t→∞
At .

Definition
Limiting Window Availability (li) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i +1
calculation steps.

li = lim
t→∞

t+i
∑
j=t

p(∀k ,0≤ k < j : ck 6|= P ∧ cj |= P)

Definition
Limiting Window Availability Sequence (LWAS) is the infinite sequence of
limiting window availabilities LWAS = 〈l0, l1, . . .〉.

8 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Fault Tolerance
Problem Statement

Limiting (Window) Availability

Definition
Limiting Availability (or Steady State Availability) is the probability, that the
system satisfies its safety and liveness predicate as t approaches infinity
A = lim

t→∞
At .

Definition
Limiting Window Availability (li) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i +1
calculation steps.

li = lim
t→∞

t+i
∑
j=t

p(∀k ,0≤ k < j : ck 6|= P ∧ cj |= P)

Definition
Limiting Window Availability Sequence (LWAS) is the infinite sequence of
limiting window availabilities LWAS = 〈l0, l1, . . .〉.

8 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

System Definition (Ingredients)

I System structure (processes and communication channels)

I Communication model (shared memory or message passing)

I Variable domains

I Algorithm

I Scheduler

I Fault model

9 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Self Stabilization

Definition
A system is self-stabilizing if and only if:

1 Starting from any state, it is guaranteed that the system will
eventually reach a state that satisfies the safety
predicate(convergence).

2 Given that the system satisfies the safety predicate, it is guaranteed
to stay in a state that satisfies the safety predicate, provided that no
fault happens (closure).

Dolev, Shlomi (2000), Self-Stabilization, MIT Press, ISBN 0-262-04178-2.

10 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Self Stabilization

Definition
A system is self-stabilizing if and only if:

1 Starting from any state, it is guaranteed that the system will
eventually reach a state that satisfies the safety
predicate(convergence).

2 Given that the system satisfies the safety predicate, it is guaranteed
to stay in a state that satisfies the safety predicate, provided that no
fault happens (closure).

Dolev, Shlomi (2000), Self-Stabilization, MIT Press, ISBN 0-262-04178-2.

10 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Self Stabilization

Definition
A system is self-stabilizing if and only if:

1 Starting from any state, it is guaranteed that the system will
eventually reach a state that satisfies the safety
predicate(convergence).

2 Given that the system satisfies the safety predicate, it is guaranteed
to stay in a state that satisfies the safety predicate, provided that no
fault happens (closure).

Dolev, Shlomi (2000), Self-Stabilization, MIT Press, ISBN 0-262-04178-2.

10 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 1/8

I Three process system

(a) = root (b) (c)

I Equi-probabilistic scheduler electing one process per cycle

I Three values (true, false and dk (don’t know))

I Fault model: transient faults with probability q = 0.01

I Simple broadcast algorithm

11 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 1/8

I Three process system

(a) = root (b) (c)

I Equi-probabilistic scheduler electing one process per cycle

I Three values (true, false and dk (don’t know))

I Fault model: transient faults with probability q = 0.01

I Simple broadcast algorithm

11 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 1/8

I Three process system

(a) = root (b) (c)

I Equi-probabilistic scheduler electing one process per cycle

I Three values (true, false and dk (don’t know))

I Fault model: transient faults with probability q = 0.01

I Simple broadcast algorithm

11 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 1/8

I Three process system

(a) = root (b) (c)

I Equi-probabilistic scheduler electing one process per cycle

I Three values (true, false and dk (don’t know))

I Fault model: transient faults with probability q = 0.01

I Simple broadcast algorithm

11 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 1/8

I Three process system

(a) = root (b) (c)

I Equi-probabilistic scheduler electing one process per cycle

I Three values (true, false and dk (don’t know))

I Fault model: transient faults with probability q = 0.01

I Simple broadcast algorithm

11 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 2/8 : the Root Algorithm
Repeat

true→ reg := true
end.

12 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 3/8 : the Non-Root Algorithm

define vector := {reg i | proc i ∈ neighbors}
Repeat
¬((false ∈ vector)xor(true ∈ vector))→
reg := dk
�((false ∈ vector)∧¬(true ∈ vector))→

reg := false
�((true ∈ vector)∧¬(false ∈ vector))→

reg := true
end.

13 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 4/8 : State Space and Markov Chain

0 = true, 1 = dk , 2 = false
Markov Chain made with tool jAndrej by Fabian Grüning

Now we can calculate the steady state probability distribution
and the limiting availability
and with a small alteration the Limiting Window Availability.

Definition
Limiting Window Availability (li) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i +1
calculation steps.

li = lim
t→∞

t+i
∑
j=t

p(∀k ,0≤ k < j : ck 6|= P ∧ cj |= P)

14 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 4/8 : State Space and Markov Chain

0 = true, 1 = dk , 2 = false
Markov Chain made with tool jAndrej by Fabian Grüning
Now we can calculate the steady state probability distribution

and the limiting availability
and with a small alteration the Limiting Window Availability.

Definition
Limiting Window Availability (li) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i +1
calculation steps.

li = lim
t→∞

t+i
∑
j=t

p(∀k ,0≤ k < j : ck 6|= P ∧ cj |= P)

14 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 4/8 : State Space and Markov Chain

0 = true, 1 = dk , 2 = false
Markov Chain made with tool jAndrej by Fabian Grüning
Now we can calculate the steady state probability distribution
and the limiting availability

and with a small alteration the Limiting Window Availability.

Definition
Limiting Window Availability (li) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i +1
calculation steps.

li = lim
t→∞

t+i
∑
j=t

p(∀k ,0≤ k < j : ck 6|= P ∧ cj |= P)

14 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 4/8 : State Space and Markov Chain

0 = true, 1 = dk , 2 = false
Markov Chain made with tool jAndrej by Fabian Grüning
Now we can calculate the steady state probability distribution
and the limiting availability
and with a small alteration the Limiting Window Availability.

Definition
Limiting Window Availability (li) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i +1
calculation steps.

li = lim
t→∞

t+i
∑
j=t

p(∀k ,0≤ k < j : ck 6|= P ∧ cj |= P)

14 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 4/8 : State Space and Markov Chain

0 = true, 1 = dk , 2 = false
Markov Chain made with tool jAndrej by Fabian Grüning

Now we can calculate the steady state probability distribution
and the limiting availability
and with a small alteration the Limiting Window Availability.

Definition
Limiting Window Availability (li) is the limiting probability that a system will
have satisfied its safety and liveness predicates at least once within i +1
calculation steps.

li = lim
t→∞

t+i
∑
j=t

p(∀k ,0≤ k < j : ck 6|= P ∧ cj |= P)

14 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 5/8 : Using the Markov Chain to Calculate the LTR

Just five small steps to go...

1 Calculate the steady state probability distribution

2 Erase all transitions originating from state 〈0,0,0〉 and

3 add transition p((〈0,0,0〉,〈0,0,0〉)) = 1

4 to take care of „a system will have satisfied P within i calculation
steps“

5 Calculate the probability distribution for each time step
while the initial probability distribution is given by the former steady
state distribution

15 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 5/8 : Using the Markov Chain to Calculate the LTR

Just five small steps to go...

1 Calculate the steady state probability distribution

2 Erase all transitions originating from state 〈0,0,0〉 and

3 add transition p((〈0,0,0〉,〈0,0,0〉)) = 1

4 to take care of „a system will have satisfied P within i calculation
steps“

5 Calculate the probability distribution for each time step
while the initial probability distribution is given by the former steady
state distribution

15 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 5/8 : Using the Markov Chain to Calculate the LTR

Just five small steps to go...

1 Calculate the steady state probability distribution

2 Erase all transitions originating from state 〈0,0,0〉 and

3 add transition p((〈0,0,0〉,〈0,0,0〉)) = 1

4 to take care of „a system will have satisfied P within i calculation
steps“

5 Calculate the probability distribution for each time step
while the initial probability distribution is given by the former steady
state distribution

15 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 5/8 : Using the Markov Chain to Calculate the LTR

Just five small steps to go...

1 Calculate the steady state probability distribution

2 Erase all transitions originating from state 〈0,0,0〉 and

3 add transition p((〈0,0,0〉,〈0,0,0〉)) = 1

4 to take care of „a system will have satisfied P within i calculation
steps“

5 Calculate the probability distribution for each time step
while the initial probability distribution is given by the former steady
state distribution

15 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 6/8 : LWAS

↓timestep/state→ 〈0,0,0〉
0 0.935981
1 0.945341
2 0.951612
3 0.956386
4 0.960342
5 0.963783
6 0.966854
7 0.969629
8 0.972154
9 0.974459
10 0.976569
11 0.978501
.

16 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 7/8 : The Relative Increase of Availability over Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

0,010

LTR of the Three Process Example system
The First Twenty Timesteps

Time Steps

Pr
ob

ab
ili

ty
 M

as
s

In
cr

ea
se

I The Increase of probability that the system has satisfied the safety
predicate within i steps

I How long would you wait for a system to be up (c |= P) again?

I Minimum availability reached?
I Until increase is too low?
I Can systems have significant spots?

17 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 7/8 : The Relative Increase of Availability over Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

0,010

LTR of the Three Process Example system
The First Twenty Timesteps

Time Steps

Pr
ob

ab
ili

ty
 M

as
s

In
cr

ea
se

I The Increase of probability that the system has satisfied the safety
predicate within i steps

I How long would you wait for a system to be up (c |= P) again?

I Minimum availability reached?
I Until increase is too low?
I Can systems have significant spots?

17 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 7/8 : The Relative Increase of Availability over Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

0,010

LTR of the Three Process Example system
The First Twenty Timesteps

Time Steps

Pr
ob

ab
ili

ty
 M

as
s

In
cr

ea
se

I The Increase of probability that the system has satisfied the safety
predicate within i steps

I How long would you wait for a system to be up (c |= P) again?

I Minimum availability reached?
I Until increase is too low?
I Can systems have significant spots?

17 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 7/8 : The Relative Increase of Availability over Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

0,010

LTR of the Three Process Example system
The First Twenty Timesteps

Time Steps

Pr
ob

ab
ili

ty
 M

as
s

In
cr

ea
se

I The Increase of probability that the system has satisfied the safety
predicate within i steps

I How long would you wait for a system to be up (c |= P) again?
I Minimum availability reached?

I Until increase is too low?
I Can systems have significant spots?

17 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 7/8 : The Relative Increase of Availability over Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

0,010

LTR of the Three Process Example system
The First Twenty Timesteps

Time Steps

Pr
ob

ab
ili

ty
 M

as
s

In
cr

ea
se

I The Increase of probability that the system has satisfied the safety
predicate within i steps

I How long would you wait for a system to be up (c |= P) again?
I Minimum availability reached?
I Until increase is too low?

I Can systems have significant spots?

17 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 7/8 : The Relative Increase of Availability over Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

0,010

LTR of the Three Process Example system
The First Twenty Timesteps

Time Steps

Pr
ob

ab
ili

ty
 M

as
s

In
cr

ea
se

I The Increase of probability that the system has satisfied the safety
predicate within i steps

I How long would you wait for a system to be up (c |= P) again?
I Minimum availability reached?
I Until increase is too low?
I Can systems have significant spots?

17 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Example 8/8 : Example System with Significant Spot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0,00

0,05

0,10

0,15

0,20

0,25

0,30

Simulation, 8 Processes, BFS, 1,000,000 Steps

Fault Probability
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

Time Steps

Pr
ob

ab
ili

ty
 M

as
s

In
cr

ea
se

 (x
10

)

18 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Markov Chain Abstraction and Decomposition

I We have the LWAS

I We can decrease the level of detail of the Markov Chain to better
recognize contexts (abstraction, cf. [Kli10])

I We can try to cope with large systems that suffer from state space
explosion (decomposition, cf. [Mal93])

19 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Markov Chain Abstraction and Decomposition

I We have the LWAS

I We can decrease the level of detail of the Markov Chain to better
recognize contexts (abstraction, cf. [Kli10])

I We can try to cope with large systems that suffer from state space
explosion (decomposition, cf. [Mal93])

19 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Markov Chain Abstraction and Decomposition

I We have the LWAS

I We can decrease the level of detail of the Markov Chain to better
recognize contexts (abstraction, cf. [Kli10])

I We can try to cope with large systems that suffer from state space
explosion (decomposition, cf. [Mal93])

19 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Abstraction of Markov Chains 1/3

I System Definition

I State Space

I Build Markov Chain

I Abstract Markov Chain

I Analyze the LWAS

20 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Abstraction of Markov Chains 2/3

I Combine states that have something in common to subsets like. . .

I . . . the number of correct processes

21 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Abstraction of Markov Chains 2/3

I Combine states that have something in common to subsets like. . .

I . . . the number of correct processes

21 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Abstraction of Markov Chains 3/3

p(vi ,wi) =

n
∑

i=0

m
∑

j=0
p(vi ,wj) ·p(vi)

n
∑

i=0
p(vi)

(1)

22 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Abstraction of Markov Chains 3/3

⇒

↓timestep/state→ 0 1 2 3
0 0.935981 0.028363 0.032848 0.002808
1 0.945341 0.019003 0.032848 0.002808
2 0.951612 0.014466 0.031115 0.002808
3 0.956386 0.011989 0.028867 0.002759
4 0.960342 0.010429 0.026567 0.002663
5 0.963783 0.009304 0.024379 0.002533
6 0.966854 0.008409 0.022352 0.002385

Table: Probability Mass Distribution over Time (0 Column Equals LWAS)
23 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Decomposition of Markov Chains

I If the system is too large to handle

I split it into managable subsystems,

I calculate each subsystems LWAS and

I take propagation between subsystems into account.

I But how?

24 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Decomposition of Markov Chains

I If the system is too large to handle

I split it into managable subsystems,

I calculate each subsystems LWAS and

I take propagation between subsystems into account.

I But how?

24 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Decomposition of Markov Chains

I If the system is too large to handle

I split it into managable subsystems,

I calculate each subsystems LWAS and

I take propagation between subsystems into account.

I But how?

24 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Decomposition of Markov Chains

I If the system is too large to handle

I split it into managable subsystems,

I calculate each subsystems LWAS and

I take propagation between subsystems into account.

I But how?

24 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Decomposition of Markov Chains

I Each subsystem gets input (and sometimes faults) propagated from
neighbors

I Each possible input from that neighbor has a probability to occur

I Case distinction: for each possible input, how would the subsystem
behave?

I Build appropriate Markov chain

I According to input probability link all these Markov chains

25 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Decomposition of Markov Chains

I Each subsystem gets input (and sometimes faults) propagated from
neighbors

I Each possible input from that neighbor has a probability to occur

I Case distinction: for each possible input, how would the subsystem
behave?

I Build appropriate Markov chain

I According to input probability link all these Markov chains

25 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Decomposition of Markov Chains

I Each subsystem gets input (and sometimes faults) propagated from
neighbors

I Each possible input from that neighbor has a probability to occur

I Case distinction: for each possible input, how would the subsystem
behave?

I Build appropriate Markov chain

I According to input probability link all these Markov chains

25 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Decomposition of Markov Chains

I Each subsystem gets input (and sometimes faults) propagated from
neighbors

I Each possible input from that neighbor has a probability to occur

I Case distinction: for each possible input, how would the subsystem
behave?

I Build appropriate Markov chain

I According to input probability link all these Markov chains

25 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Decomposition of Markov Chains

I Each subsystem gets input (and sometimes faults) propagated from
neighbors

I Each possible input from that neighbor has a probability to occur

I Case distinction: for each possible input, how would the subsystem
behave?

I Build appropriate Markov chain

I According to input probability link all these Markov chains

25 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Challenges

I Accuracy issues!

I Cyclic dependencies

26 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Example of Calculating the LWAS
Abstraction of Markov Chains
Decomposition of Markov Chains

Challenges

I Accuracy issues!

I Cyclic dependencies

26 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Progress So Far
ToDo List

Progress So Far

I Redundancy in time/space

I Unmasking fault tolerance

I Metric: LWAS

I Calculation of LWAS

I Markov chain abstraction

I Markov chain decomposition

27 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Progress So Far
ToDo List

Progress So Far

I Redundancy in time/space

I Unmasking fault tolerance

I Metric: LWAS

I Calculation of LWAS

I Markov chain abstraction

I Markov chain decomposition

27 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Progress So Far
ToDo List

Progress So Far

I Redundancy in time/space

I Unmasking fault tolerance

I Metric: LWAS

I Calculation of LWAS

I Markov chain abstraction

I Markov chain decomposition

27 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Progress So Far
ToDo List

Progress So Far

I Redundancy in time/space

I Unmasking fault tolerance

I Metric: LWAS

I Calculation of LWAS

I Markov chain abstraction

I Markov chain decomposition

27 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Progress So Far
ToDo List

Progress So Far

I Redundancy in time/space

I Unmasking fault tolerance

I Metric: LWAS

I Calculation of LWAS

I Markov chain abstraction

I Markov chain decomposition

27 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Progress So Far
ToDo List

Progress So Far

I Redundancy in time/space

I Unmasking fault tolerance

I Metric: LWAS

I Calculation of LWAS

I Markov chain abstraction

I Markov chain decomposition

27 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Progress So Far
ToDo List

ToDo List

I Complete Decomposition

I Build framework that automatically finds set of favorable trade-offs

28 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Progress So Far
ToDo List

ToDo List

I Complete Decomposition

I Build framework that automatically finds set of favorable trade-offs

28 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

Questions?

29 / 30

Introduction
Current Focus

Conclusion and Outlook
Bibliography

[Mal93] Manish Malhotra.
Specification and Solution of Dependability Models of Fault-tolerant
Systems.
PhD thesis, Durham, NC, USA, 1993.

[Kli10] Daniel Klink.
Three-valued Abstraction for Stochastic Systems.
PhD thesis, RWTH Aachen, Mar 2010.

[MDT09] Nils Müllner, Abhishek Dhama, and Oliver Theel.
Deriving a Good Trade-off Between System Availability and Time
Redundancy.
In Proceedings of the Symposia and Workshops on Ubiquitious,
Automatic and Trusted Computing, number E3737, pages 61–67.
IEEE Computer Society Press, July 2009.

30 / 30

	Introduction
	Fault Tolerance
	Problem Statement

	Current Focus
	Example of Calculating the LWAS
	Abstraction of Markov Chains
	Decomposition of Markov Chains

	Conclusion and Outlook
	Progress So Far
	ToDo List

	
	Bibliography

