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Abstract

Fault tolerance measures such as reliability and availability are employed to select
the most suitable fault tolerant system to be deployed under a given environment.
Although such measures have been defined for masking fault tolerant systems, until
recently they were not defined for non-masking fault tolerant systems. In [War06],
a procedure has been outlined to determine the reliability, instantaneous availabil-
ity and limiting availability for self-stabilizing distributed algorithms[Dol00] using
Markov-chains. The procedure utilizes a method similar to predicate abstraction
to reduce the state space of a self-stabilizing system and derives the Markov-chain
representing the abstracted system. However, assumption about fault-propagation
and approximations introduced by the abstraction technique hinder the accuracy
of the measures obtained. Simulation of the distributed algorithms can be used to
determine more accurate transition probabilities and hence can be used to fine tune
the Markov-chains representing the abstraction technique. Such a simulator can also
facilitate the study of the variation of reliability and availability due to fault profile
of the environment.

This work is concerned with the development of a simulator which can simulate a self-
stabilizing distributed algorithm’s behavior under transient faults. It also provides
a mechanism for fault injection along with facility to vary the error probability
distribution. The simulator is written in the purely functional concurrent language
Erlang and provides the possibility to record measures which can be fed to external
tools for further analysis. Erlang was chosen for its abilities in distributed concurrent
computing. The simulation results are used to verify the metrics obtained from the
analysis procedure described in [War06]. This work provides insights as to how to
improve the fault tolerance metrics of a given self-stabilizing algorithm based on the
results from the simulations. Also the fine tuning of the analysis procedure based on
feedback from the simulator is available. A complete user manual of the simulator
is enclosed with this thesis.
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1. Introduction

1.1 Motivation

Distributed systems are gaining more and more importance because increase of com-
puting power is achieved easier by using multiple components instead of rising one
components quality. Not only for large-scale projects1 but also for desktop comput-
ers where recent development indicates an increase of the number of cores featured
per chip [WR03] the gain of resources is coupled to the increase of components.

Since the number of elements is proportional to the possibility of the occurrence of
faults and distributed systems consist of more elements than single-core systems,
the possibility for the occurrence of faults rises. To cope with faults, fault-tolerance
is a required feature that is provided by self-stabilization.

In a recent research-project at the University of Oldenburg an approach has been
developed to analyze fault-tolerance-measures in self-stabilizing distributed non-
masking fault-tolerant systems utilizing a method similar to predicate abstraction
to reduce the state space of a self-stabilizing system and to derive the Markov-chain
representing the transitions [War06]. As the trade-off reduces the accuracy of the
results, it is reasonable to simulate the behavior of self-stabilizing distributed sys-
tems.

1.2 Problem Specification

The approach discussed in the paper [War06] introduces an abstraction technique
that makes assumptions about fault-propagation and approximations. These reduce
the accuracy of the values obtained as described in the paper. To acquire fault-
tolerance measures with a certain degree of accuracy it is reasonable to simulate an
appropriate environment and observe its behavior.

In this thesis, a Simulator for Self-Stabilizing Distributed Algorithms (SiSSDA) is
developed and four algorithms are simulated to be evaluated in significant scenar-
ios. SiSSDA is implemented in the purely functional concurrent language Erlang

1http://distributedcomputing.info/

http://distributedcomputing.info/
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and can be executed in both distributed and local environments to determine fault-
tolerance measures. Erlang was chosen because it was developed for distributed ap-
plications featuring platform independence, high reliability (nine nines [Arm, P.29]),
it is runtime-efficient and facilitates rapid prototyping since it is code-efficient, too.

SiSSDA offers not only flexibility provided by important parameters like dynamic
fault-environments. It is also built for expansion and is ready to cope with future
algorithms, topologies and environments.

To acquire proper results using the simulator, a manual is enclosed where imple-
mentation details are discussed. For users that are already familiar with the pro-
gramming language used (Erlang) as well as the distributed algorithms featured and
fault-tolerance measures and self-stabilization, a quick-start guide will contain all
information needed to use the simulator.

A full version containing all the information and background covered not only in
this thesis but the simulator is also provided in the manual. Since the simulator is
highly flexible, a large number of parameters are available to achieve the detailed
execution of case studies.

To compare the results derived with the analytical method described in [War06],
significant scenarios have been chosen to be simulated as case studies. A scenario
consists of the algorithm and the topology chosen as well as fine-tuning of the pa-
rameters provided by the configuration as described in section 4.2 in the manual.

1.3 Thesis Outline

First, the system model is introduced in section 2.1. After applying self-stabilization
in section 2.3 the case studies used for the simulator are presented in section 2.4 using
the system model.

To present the analytical background, fault-tolerance measures like availability and
reliability are discussed in section 3.1. After introducing discrete-time Markov-chains
in section 3.2, an example shows the utilization of a system that is reduced to a
spanning tree using a self-stabilizing algorithm. Following, the appropriate Markov-
chain is derived to to calculate fault-tolerance measures.

Markov-chains have been used in [War06] as an important tool and are required for
the analytical approach.

Chapter 4 presents the simulator and gives background knowledge. Nevertheless, the
important information on how to use the simulator and its functioning is provided
in the enclosed manual.

The results acquired with the simulator gathered in several hundred executions are
presented in chapter 5. Although complex scenarios were chosen that were not feasi-
ble for the analytical approach, the assertions given by the results can be compared.

Looking at the approach, the simulator and the results discussed in this thesis,
chapter 6 concludes the outcome and delivers a short outlook on possible further
ways for further research.



2. Self-Stabilizing Distributed
Algorithms

This chapter starts with an example for a self-stabilizing distributed system that
was introduced by Shlomi Dolev, one of the leading scientists in the field of self-
stabilization [Dol00]. After the example, the self-stabilizing system model is intro-
duced.

Using this background, the case studies required for the simulation are presented fea-
turing the four self-stabilizing algorithms Depth-First Search, Breadth-First Search,
Leader Election and Mutual Exclusion as well as significant topologies.

Example

As a simple but yet demonstrative example for self-stabilizing distributed systems
Dolev instances a scenario, in which an orchestra tries to play on a windy day
outdoors without a conductor. Due to the wind each member can only hear her direct
neighbors. Dolev presents various versions to lead to one self-stabilizing solution for
the orchestra. Each player has a score according to her instrument for the same
piece of music. After finishing with the score, players will start over again. Faults
may occur since the wind may change the pages individually which players would
not notice and by this the musicians might loose synchrony.

First Scenario If one musician hears that one of her neighbors is playing a different
part of the score, she can decide to synchronize with this status or not. The problems
are:

• If rule is to change to the part of the score one of the neighbors is playing, there
is a decision-problem if both neighbors are at different parts of the score. Even
majority-consensus methods might fail since it is possible that one musician
and her direct neighbors all play different parts of the score.

• If the eyed musician and one of her neighbors are playing different parts of the
score, both could change according to each other, being in an asynchronous
state again. This would lead to stuttering behavior.
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So further measures are required to achieve self-stabilization.

Second Scenario If asynchrony is detected, it is reasonable to restart at a pre-
designated part of the score, for example the beginning of the whole score. It might
also be reasonable later on to define certain sections in which different behavior is
aspired. In this scenario one possible behavior might be to restart the least common
movement.

• The problem is that only direct neighbors will restart at a certain state if they
detect local asynchrony. The next neighbors will realize the restart too late,
thus restarting again with their neighbors which will lead to a global stuttering
situation again.

Third Scenario One self-stabilizing strategy is, that every player has to join her
neighbor who plays the earliest part, if the page is earlier than her own page.

• It is always determinable if each player is in synchrony with her neighbors and
if she has to change according to the neighbor’s status.

• There is not the possibility to hang in a stuttering loop in the absence of
further faults since the earliest stage is always the valid state and a flip-flop
always requires two valid states.

• As there is always one player with the least page-number, all members will
converge to this player’s state until synchrony is reached if no further transient
faults occur. If further transient faults occur, synchrony will still be achieved
setting the least page-number.

If one period in which no transient fault happens is long enough, the players will be
in synchrony again and if no further transient faults happen all players will reach
the end of the score simultaneously.

This example presents a solution, how distributed systems, in which transient faults
might occur, use self-stabilization to regain an operational status. The orchestra
is a self-stabilizing distributed system. It’s efforts to regain synchrony in presence
of transient faults can follow different strategies. The outcome of these strategies,
measured as mean time to loose synchrony and mean time to regain synchrony, can
be used for comparison.

2.1 The System-Model

According to [Dol00], the system model has to be abstract, such that one model can
represent different settings like

• communication networks,

• multiprocessor computers or

• multitasking single computers.
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2.1.1 Communication

The system is defined as a set of n processors which are connected by m communica-
tion channels with n, m ∈ N. The processors are referred to by their index so the ith
processor is denoted as Pi and the communication channels are referred to as message
queues with the first identifier being the sending processor and the second identi-
fier referring to the receiving processor such that qi,j references the communication
channel from process Pi to Pj. There are two common ways for communication.

• Shared Memory: Processors share a common set of memory with read- and
write-restrictions to propagate their current status.

• Message Passing: A message is sent via a common channel.

These techniques works also using uni- and bidirectional links. While in the shared
memory, model processes use shared communication registers. One processor writes
to a resource with exclusive right to write while another process may only read from
that resource. Analogously for the message passing model, Pi can send a message
to Pj, while Pi is unreachable to Pj.

As elaborated in [Dol00], a configuration

c = (s1, s2, · · · , sn, q1,2, q1,3, · · · , qi,j, qn,n−1) (2.1)

is defined as the set of all states of all processors, where si is the state of processor
Pi, and the message queues qi,j with i, j ∈ N, i 6= j. A queue consists of messages
sent by Pi to Pj that were not received yet. To model the shared memory model in
an appropriate way, the registers use a first-in-first-out (FIFO) strategy.

2.1.2 Temporal Model

The time-model used is important since the speed of the processors in a distributed
system may vary and time required for message passing is not static. Hence, this
nondeterminism is likely to result in totally different state transitions of processors
from identical initial states [Dol00].

The model used in this thesis features discrete steps in which only one single pro-
cessor may execute one step that consists of one computation step and one commu-
nication operation that may be either sending (writing) or receiving (reading). The
model using these atomic steps is called interleaving model.

Each communication step may lead to a change of the state of the processor that
executed a computation step. Note that although this thesis only covers atomic
computation steps in an arbitrary interleaving fashion, SiSSDA is also able to cope
with concurrent execution of computation steps as discussed in section 2.3.2.

A computation step will be referred to as step in the following. A step, denoted as ai,
is defined as transition between two configurations ci and ci+1 with ci

ai−→ ci+1. In the
interleaving model a sequence of configurations and transitions is called execution

E = (c1, a1, c2, a2, · · · ) (2.2)
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2.1.3 Properties

An execution E is

• live, if each process is executed infinitely often when the choice over the set of
transitions is executed infinitely often (that means, there is no starvation as
there is no deadlock),

• fair, if, for every transition, if it is enabled infinitely often, it is taken infinitely
often and

• safe, if there is no violation of safety conditions [Lyn96].

Examples

• Liveness: if the attribute of liveness is violated, there is at least one process
that cannot execute. A possible reason might be, that the process is waiting
for a resource but never gets a grant to use it because another process blocks
it. The consequence is called starvation.

• Fairness: In a fair execution no processor is favored and processors are assigned
equally for execution.

• Safety: in an unsafe environment deadlocks are possible. For a deadlock,
several preconditions are required:

– Mutual Exclusion: A process has exclusive right to a resource.

– Hold and Wait: While waiting for further required resources a process
waits keeping its exclusive rights for resources gathered so far. This is
also called busy waiting.

– No Preemption: Once granted, resources must not be withdrawn from a
process by a higher instance.

– Circular Wait: If a chain exists consisting of processes and resources
in which one process holds a resource another process requires and vice
versa, a deadlock exists.

One popular example that depicts these attributes of distributed systems is the
dining philosopher’s problem

It was first introduced by Tony Hoare after Edsger Dijkstra used a similar question
on a synchronization problem where five computers compete for the access to five
tape-drives earlier in 1971 [Dij02].



2.1. The System-Model 7

Plato

Descartes

Locke

Hegel

Nietzsche

spaghetti

Figure 2.1:
Five dining philosophers sharing five forks while two adjacent forks are required to
get access to the common resource spaghetti.

In this model five philosophers meet for lunch. Philosophers are only capable of
eating or thinking. Since these philosophers are not communicative, they do not
each other. The philosophers sit down at a round table. Five forks are on the table
as shown in figure 2.1. A philosopher requires two forks at a time to eat. While a
philosopher is thinking, he puts the forks aside, one to his left and one to his right.

If a philosopher is busy eating, his direct neighbors have to wait until he has finished
and their particular next neighbors are not eating as well. When a philosopher has
finished his meal, he starts thinking until he gets hungry again.

• One major issue to depict is that a philosopher may take a fork if possible
when he gets hungry. In that case, deadlocks are possible since a situation
might occur where all philosophers get hungry at the same time, leading to a
situation where each of them holds one fork. In that case, nobody can eat but
everybody is waiting for their neighbors to finish. This is called a violation of
the attribute of safety.

• Another problem of concurrency this metaphor depicts is starvation, which
is a tellingly pun in this case. If there is one philosopher with two adjacent
neighbors from which at least one is eating all the time, this philosopher will
starve over time. This is a violation of the attribute of liveness.

The model is not-preemptive, since no one can force a philosopher to put a fork back
if he has one or two in his hands. The model is fair, since every philosopher has the
same chance to eventually get two forks if he gets hungry.

The implementation of both schedulers implemented in the simulator are

• fair,

• live and
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• safe

and the results are measured with a number of steps that is sufficiently large (see
also section 4.2.1 in the manual).

2.1.4 Graphs

A distributed system can be abstracted as graph when the processors can be mapped
to nodes and the communication channels or shared memory respectively can be
mapped to edges. To keep up with identifiers introduced so far, vertices, processors
and nodes will be referred to as Pi and edges, shared memory, message passing
and communication channels will be referred to as message-queue qi,j as defined in
section 2.1.

2.1.1 A graph G can be defined as a pair (V, E), where V is a set of vertices, and E
is a set of edges between the vertices E = {(u, v)|u, v ∈ V }. If the graph is undirected,
the adjacency relation defined by the edges is symmetric, or E = {{u, v}|u, v ∈ V }
(sets of vertices rather than ordered pairs). If the graph does not allow self-loops,
adjacency is irreflexive.[BT]

One reasonable way to define graphs are adjacency matrices. An adjacency matrix
of a finite graph of n vertices is a n × n matrix. The entry ai,j, which is the entry
is the ith row and jth column of the adjacency matrix, refers to the number of edges
from vertex i to vertex j. The diagonal from a00 to ann of the matrix refers to the
number of edges that are self-pointing to each vertex.

For the thesis, a finite simple graph is used where the adjacency matrix is a (0, 1)-
matrix.

The topologies featured in the thesis are also presented as adjacency matrices and
can be used as example (section 2.4.5).

Obviously, matrices can be represented with less information while using strict bidi-
rectional topologies since the values can be mirrored at the diagonal from [1, 1] to
[n, n] as shown in the following picture:

a,a a,b a,c a,d

b,a b,b b,c b,d

c,a c,b c,c c,d

d,a d,b d,c d,d

Figure 2.2:
This picture shows the redundancy of information in a matrix that features strictly
bidirectional edges.
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The algorithms require different kinds of graphs, though. While Depth-First Search,
Breadth-First Search and Leader Election require the graph to be in the format of a
tree, which is a graph in which any two vertices are connected by exactly one path,
the graphs used for Mutual Exclusion for example are limited to the format of a ring,
which also is a legitimate tree.

The graphs used in the thesis for simulation are described in section 2.4.5.

2.2 Distributed Algorithms
A distributed algorithm is defined to be a collection of local algorithms from the
same copy one for each processor. Every processor independently executes its local
algorithm and cooperates with the other processors to achieve a certain objective.
[WCWH03, Ch.5]

The vertices described in the previous section are abstract for nodes that are a part
of a distributed environment as mentioned in section 2.1. The single components are
communicating and exchanging data while processing the data propagated may lead
to a change of the local status of a node executing a step according to the algorithm
executed.

2.2.1 Example

The following example shows, how a system is used to derive an appropriate spanning
tree.

b

d e

c

a

Figure 2.3: This graph is used in the following example.

The graph shown in Figure 2.3 models a distributed system. The appropriate adja-
cency matrix is defined as:

M =


0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0


In a distributed environment like this many algorithms are feasible to be executed.
The algorithms used for the thesis are discussed in section 2.4 in detail.

The algorithm executed defines the spanning tree that is derived using the given
tree. One feasible algorithm for the tree shown in Figure 2.3 is Depth-First Search as
presented in section 2.4.2. The appropriate spanning tree this distributed algorithm
builds is shown in Figure 2.4.
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2.2.1 A spanning tree is a connected, acyclic subgraph containing all the vertices
of a graph.[BT]

By contrast to the original graph, the original edges are replaced by new edges
depending on the algorithm executed. The minimum spanning tree for the given
example, using the system shown in Figure 2.3 and the Depth-First Search Algorithm
presented in 2.4.2, is shown in the following figure:

b

d e

c

a

Figure 2.4: This is a minimum spanning tree of the previous example.

In a minimum spanning tree, only edges required are used, so that every node has
at least one connection to the rest of the graph. Using a graph with weighted edges,
the minimum spanning tree prefers the edges with the smallest values.

Spanning trees can not only be defined by means of minimal size. It is also possible
to build spanning trees according to algorithms as elaborated in 2.4. In such a
spanning tree, nodes update their status by communicating with their neighbors if
they are granted to execute a step. Nodes as well as edges of the spanning tree have
certain possibilities to fail. Even though there are different types of failure like

• communication is not possible if recipient is unreachable,

• communication is not possible when dispatcher is unreachable or

• communication delivers wrong values since values committed are corrupt.

Every failure is considered critical for self-stabilizing distributed fault-tolerant sys-
tems. Systems can be classified as masking fault tolerant and non-masking fault-
tolerant systems.

2.2.1 Fault Tolerance: This is the ability of a system to deliver desired level of
functionality in the presence of faults, i.e., instead of preventing faults from occur-
ring, one tries to tolerate their effects. To achieve this, the system should be able to
detect and/or correct errors in the system.[Jhu]

While masking fault-tolerance conceals transient faults from the user, non-masking
fault-tolerance can be used to determine fault-tolerance measures.

In contrast to masking fault-tolerance, this thesis’ emphasis is on non-masking fault-
tolerance and therefore consequences by failures are entirely taken into account.

Until now, we have an abstract system model, that can also be defined by its ad-
jacency matrix, a spanning tree that relies on algorithms that are described later,
and faults corrupting the system. In the next section the aspect of self-stabilization
discussed, leading toward the scenarios observed in the thesis.
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2.3 Self-Stabilization

Self-stabilization was first introduced by Edsger Dijkstra (1930-2002), a dutch com-
puter scientist who received the A. M. Turing-Award. The intention is to design a
distributed system that can be started in an arbitrary state and still converge to a
desired behavior [Dol00].

These systems are designed to work in an environment where transient faults can
happen. A transient fault corrupts the state of the system by corrupting message
channels or shared memory while the behavior of the system remains unchanged1.
The term transient implies that faults occur for a limited time and do not persist.
While the fault ceases to influence the state of a processor, the system may stabilize
autonomously and regain a legitimate state.

Permanent Fault

Incorrect Design

Marginal Components

Unstable Environment

Wrong User Interaction

Permanent Fault

Intermittent Fault

Transient Fault

System Error

Figure 2.5:
The fault model in reference to [Tz] shows types of faults. By this, transient faults
can be distinguished from other types of faults that are disregarded in the thesis.

Due to occurrence of transient faults the system will reach an arbitrary state that
might not be part of the specified set of legal states so it gets corrupted. The system
is self-stabilizing because it is designed to converge to a desired behavior from any
arbitrary state in a finite amount of time. That means, it regains a state that is part
of the specified legal set of states within a finite amount of time.

Following the remarks by Marco Schneider, a distributed self-stabilizing system S is
the union of the local states of its components [Sch93]. In contrast to the definition
of the configuration c by Dolev [Dol00] as wrapped in section 2.1.1, the definition
of a system by Schneider does not explicitly take message queues into account. As
the algorithms featured in the simulator do not require message queues since the
execution semantics are limited to one and by this messages are processed instanta-
neously, the more abstract definition of a system S by Schneider is sufficient for this
thesis.

2.3.1 Definition

2.3.1 We define self-stabilization for a system S with respect to a predicate P , over
its set of global states, where P is intended to identify its correct execution. S is
self-stabilizing with respect to predicate P if it satisfies the following two properties:

1http://pierre.ici.ro/ici/revista/sic1998 4/art01.html

http://pierre.ici.ro/ici/revista/sic1998_4/art01.html
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1. Closure: P is closed under the execution of S. That is, once P is established
in S, it cannot be falsified.

2. Convergence: Starting from an arbitrary global state, S is guaranteed to reach
a global state satisfying P within a finite number of state transitions [Sch93].

Convergence is also referred to as reachability in contemporary literature [CD94,
P.21]. This means, that the state space for a system S is divided into legitimate
states that satisfy P and illegitimate states that do not satisfy P . P depends on
the algorithm employed. The predicate P used in this thesis is quite simple. If
every node is in its legal configuration according to the predefined spanning tree,
the system S satisfies P . If one or more nodes are in an illegitimate state, neither
the global predicate P is satisfied.

As this thesis does not cover dynamic topologies (although the simulator is ready
to cope with), further definitions of self-stabilization regarding dynamic patterns as
described in [Sch93] are not taken into account.

2.3.2 Execution-Semantics

The discussion of execution-semantics is mandatory as it plays an important role for
further research and and deeper understanding for the simulator. For the practical
issues please refer to the manual section 4.3.2.

The execution semantics, or overlapping semantics [AFG93, Ch. 2.2], alleges the
number of nodes that are at most allowed to execute per step. While featuring
maximal parallelism allows all feasible processes to execute when ready, serialized
semantics as used for the simulation, allow execution to one process per step as
defined in [AFG93, Ch. 2.1].

If we define a graph g according to section 2.1.4 consisting of

• vertices Pi and

• edges ei,j

and if the legal state of each node s(ni) is specified as si = 1 and the illegal state
as si = 0 where i is referring to the appropriate node, for each step the state of the
system is represented as system state Sk = {s0, . . . , sn−1}, with k being the number
of the step and n being the number of nodes.

There are 2n possible configurations since each node can be either in the legal set
of states or in the illegal set of states and there are n nodes. Each state represents
one possible configuration, starting with every node being in the illegal set of states
S = {0, 0, · · · , 0} until the binary counting leads to a configuration in which every
node is in the legal set of states S = {1, 1, · · · , 1}.

Furthermore, the possibility to reach system state Sj from a system state Si which
now depends on the behavior of the nodes, the scheduler’s behavior and the waiting-
time of each node, can be calculated. As the simulator features only an arbitrary
interleaving behavior in which at most one node may execute in one time-step, only
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one bit representing the nodes status in the configuration can flip if the executing
node changes its status.

With the set of all possible configurations Γ = S0, . . . , S2n−1 (according to [Kok05])
and therefore all appropriate transition possibilities Π = [πi,j] that are feasible for
possible steps a as defined in section 2.1.2, only system states are within range, that
differ at most in one bit from the originating configuration. While regarding Markov-
chains the term Hamming-distance is commonly used to refer to the maximum range
within the Markov-chain per step as discussed later in section 3.2, the term execution
semantics is used referring to the system model.

Although atomic steps are simulated and by this, concurrent execution of tasks is
prevented, further analysis might require higher execution semantics to deal with
concurrency. The following figure exemplifies the impact of execution semantics. As
the 2.1 example already demonstrated, using execution semantics greater one brings
several issues that have to be regarded.

0,0,0

0,0,10,1,0

0,1,1

1,0,0

1,0,1 1,1,0

1,1,1

Figure 2.6: Serialized semantics in a graph featuring three processes.

From the state S = {1, 1, 1} only four other states are reachable within a hamming
distance of one (black arrows), while with a hamming distance of two, seven states
are reachable (blue arrows and black arrows). Since the system S consists of three
processes P1, P2 and P3, the maximal reasonable value for execution semantics is
three. Within execution semantics of the size of the system any configuration is
within range from any other configuration.

Defining all possible configurations presents the state space. By the exact definition
of the state space it is possible, to distinguish the illegal states from the legal set of
states. As already indicated in the previous figure, a system is in the predefined set
of legal states if each process Pi satisfies the predicate P as defined in section 2.3.1.

2.3.3 Using Self-Stabilization

Self-stabilization brings many advantages. Not only that systems can converge to
a legitimate state under the occurrence of transient faults, but they can also start
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in arbitrary states and since omit an initialization phase. The simulator supports
both features, since the flag init arbitrary implements both behaviors (please refer
to section 4.2.6 of the enclosed manual). To measure the self-stabilization property,
so called fault-tolerance measures, it is reasonable to introduce the terms

• availability,

• reliability and

• limiting availability.

Furthermore, Markov-chains are introduced to model the theoretical background of
the simulator. It is reasonable, to first define the case studies and present several
scenarios, consisting of topologies and algorithms, in section 2.4, to have a scenario
ready to exemplify fault-tolerance measures and Markov-chains in chapter 3.

2.4 Case Studies

To compare fault-tolerance measures that are introduced in section 3.1, different
scenarios are presented. On the one hand, different topologies are compared in
section 2.4.5. Each topology is represented by an 8× 8 matrix.

On the other hand, each topology is thoroughly simulated using different strategies
to define the appropriate spanning tree according to the algorithm used. As a
constraint for the denotation of the nodes, there are only two restrictions:

• the identifiers consist of one atom (as defined in chapter 5.1 in the manual)
and

• the root node is identified as a.

For the topologies implemented as case studies, descriptors were chosen to be the
first eight letters from the alphabet. However, it might be reasonable to choose
different descriptors for future topologies.

The spanning trees defined by the algorithms are built as example with topology
COMPLEX8 that is described in subsection 2.4.5. While the nodes in the graph
are connected with black arrows, red arrows indicate the traversing sequence by the
spanning tree.

Please note that there is a difference in the spanning tree algorithm and the root-
and client-node value assignment sub-protocols as discussed in [CDK99]. As for the
topologies, only the spanning tree algorithms are important, the value assignment
is presented just for the DFS algorithm to discuss aspects of self-stabilization.

2.4.1 Self Stabilizing Breadth First Search Spanning Tree
Algorithm

The Self Stabilizing Breadth-First Search Spanning Tree Algorithm algorithm (BFS)
builds a spanning tree in which the nodes are visited according to their minimal
distance to the root node a (please also refer to [SS92] and [AB98]).
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a

h

d

g

e

f

cb

{a, [a]}

{a,[a,d]} {a,[a,d,e]}

{a,[a,d,e,b]} {a,[a,d,e,b,c]} {a,[a,d,e,b,c,g]}

{a,[a,d,e,b,c,g,h]}

{a,[a,d,e,b,c,g,h,f]}

Figure 2.7:
This illustration shows the operation method of the Breadth-First Search Algorithm

As input, a graph G and the name of the root node, that is predefined as a, are
given to the algorithm.

Root: do forever
for m := 1 to δ do rim :=< 0, 0 >

od
Other: do forever

for m := 1 to δ do lrmi :=read(rmi)
FirstFound := false
dist := 1 + min(lrmi.dis | 1 ≤ m ≤ δ)
for m := 1 to δ
do

if not FirstFound and lrmi.dis = dist− 1 then
write rim :=< 1, dist >
FirstFound := true

else
write rim :=< 0, dist >

od
od

Figure 2.8: BFS Spanning Tree Algorithm

The BFS spanning tree algorithm in reference to [Dol00, P.13] allocates the minimal
distance to each node. Traversing through each level, nodes are ordered by their
identifier, such that, according to the given topology, the algorithm performs the
following steps:

1. The algorithm is executed and the value obtaining sub-algorithm first initializes
root node a.
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2. Node a has two children, d and e, which are visited according to their ID (first
d, then e).

3. d and e have four children [b,c,g,h] (equivalent to the grandchildren of node a)
which are visited according to their ID. Being a child of a set of nodes means,
that at least one node of the specified set of nodes is a parent (e.g. b is a child
of e and not of d). Yet having multiple parents is of course possible (e.g. c is a
child of both, d and e). Note that having multiple parents grants no privileges
such as benefiting in priority.

4. Since f is the last unvisited node and f has the greatest minimal distance to
node a, f is the last node visited.

It is interesting, that two successive nodes do not have to be directly connected.
Having the same minimal distance to a common ancestor is a sufficient criteria to
be visited consecutively such as nodes g and h in the example.

BFS has a time complexity of O(bm) and a space complexity of O(bm).

Self-stabilization requires each node to hold the whole topology ready. For example,
node h updates the local status by reports from nodes c, e and f although the direct
predecessor defined by the spanning tree is g. Since there is no connection between
g and h, BFS algorithm requires all nodes to maintain the whole topology which is
transmitted with every update operation such that each node can generate its new
status even if its predecessor is not directly connected.

To prove the correctness of self stabilization in reference to [SS92, P.4], three steps
have to be considered:

1. The legitimate state of a graph represents the BFS spanning tree. The proof
follows the BFS spanning tree algorithm:

• Root node has a level of 0.

• Since root propagates its level, all children set their level to 1.

• Repeating this argument for all nodes except those initialized delivers the
BFS spanning tree.

2. If the system is in a legitimate state, no node will change its value.

3. In any illegitimate state at least one node will update so some action is always
guaranteed while the system is not in a legal state.

Lemma 2.4.1 In any illegitimate state there exists at least one privileged node, i.e.
in any illegitimate state some action is always guaranteed. [SS92, P.5]

As continued in [SS92, P.8], the system is guaranteed to reach the predefined legal
set of states within a finite number of steps in the absence of further faults. For the
complete derivation please refer to [SS92].
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2.4.2 Self Stabilizing Depth First Search Spanning Tree Al-
gorithm

The Self Stabilizing Depth-First Search Spanning Tree Algorithm algorithm (DFS)
also builds a spanning tree. Starting in the root-node, always the child with the
smallest identifier is visited first. When a node has no children, backtracking is used
and siblings are visited.

The following example shows the proceeding of DFS on the previously mentioned
topology COMPLEX8:

a

h

d

g

e

f

cb

{a, [a]}

{a,[a,d]} {a,[a,d,c,b,e]}

{a,[a,d,c,b]} {a,[a,d,c]} {a,[a,d,c,b,e,g]}

{a,[a,d,c,b,e,g,f]}

{a,[a,d,c,b,e,g,f,h]}

Figure 2.9:
This illustration shows the operation method of the Depth-First Search Algorithm

There are two important papers that concentrate on the DFS algorithm:

• The paper Self-Stabilizing Depth-First Search introduces the self-stabilizing
depth first search spanning tree algorithm. The DFS algorithm is proven
to be self-stabilizing by induction [P.4], yet it only covers the spanning tree
algorithm.

• The paper Self-Stabilizing Distributed Constraint Satisfaction on the other
hand differs between the spanning tree algorithm and the Value Assignment
Sub-Protocol [CDK99, P15]. The authors Zeev Collin, Rina Dechter and
Shmuel Katz first introduce a spanning tree algorithm similar to the one dis-
cussed in [CD94] and give evidence for self-stabilization by proving convergence
with induction [CD94, P.13].
Following they present the value assignment sub-protocol [CD94, P.20] and
prove self-stabilization by verifying reachability and closure (please also refer
to 2.3.1).

With reference to [CD94, P.4], self-stabilizing Depth-First Search is given as



18 2. Self-Stabilizing Distributed Algorithms

root P1:
do forever

path1 := ⊥
od

non-root Pi:
do forever

for j := 1 to δ do read pathj := read(pathj)od
writepathi := min{| read pathj ◦ aj(i) |N , suchthat1 ≤ j ≤ δ}

od

Figure 2.10: DFS Spanning Tree Algorithm

Lemma 2.4.1 The graph traversal mechanism is self-stabilizing with respect to the
set of legally controlled operations.[CDK99, Sec.3.4.3]

Self-stabilization can be verified by induction. In contrast to BFS, the proof does
not list the generations that are traversed, but the distinct branches. The example
presented in figure 2.9 indicates that for topology COMPLEX8 only one branch is
traversed. Spanning trees that have a maximum branching factor of 1 obviously do
not require backtracking.

According to topology COMPLEX8 the algorithm performs the following steps:

1. The algorithm is executed and the value obtaining sub-algorithm first initializes
root node a.

2. Since the current node a has two adjacent nodes d and e, the one with the
lesser id is chosen such that node d is the next node.

3. Following, the smallest unvisited neighbor is chosen, which of course is c within
the set of adjacent nodes [a,c,e,g].

4. The smallest unvisited neighbor of node c is node b, which is followed by

5. e. Note that although e is directly connected to node a, DFS first searches all
the nodes mentioned above before node e is visited.

6. The smallest neighbor of e is g.

7. Although f has the greatest minimal distance of 3 to the root node a, it is
visited after node e due to a smaller id than node

8. h, which is the last node visited.

It is important that the algorithm memorizes the nodes already visited. Otherwise
loops are possible that lead to a deadlock as demonstrated in the following figure.
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a

bc

d

Figure 2.11: DFS requires memory to prevent deadlocks

The algorithm has a time complexity of O(bm) and a space complexity of O(b ·m)
with b being the maximal branching factor and m being the maximal path length.
Note that O(bm) = O(|V |+ |E|). Even though DFS is nether optimal nor complete
since infinite paths and cycles are possible, this algorithm is eligible to determine
fault-tolerance measures. Popular derivatives of DFS are

• iterative deepening DFS, which is a combination of DFS and BFS and is com-
plete, and

• depth-limited search, which is complete within limitation even for cyclic and
infinite graphs2.

Obviously, backtracking is not needed in this topology in contrast to topology PAR-
ALLEL8 presented in section 2.4.5, where node a has to be revisited each time before
a new node can be visited. The appropriate sequence defining the spanning tree for
topology PARALLEL8 is

a->b->a->c->a->d->a->e->a->f ->a->g->a->h.

If we set a to be part of an infinite branch containing only nodes with IDs smaller
than c (such as a1, a2, . . . ), obviously the rest of the tree will will never be reached.
This means, that DFS is not complete for topologies with infinite branches.

2.4.3 Self Stabilizing Leader Election Spanning Tree Algo-
rithm

The Self Stabilizing Leader Election Spanning Tree Algorithm algorithm is important
for many protocols used in distributed systems. For example, in Blue Tooth net-
works a leader has to be elected first before communication is possible. To maintain
communication even in fault-hazardous environments, dynamic patterns are required
to cope with the occurrence of transient faults.

2www.cis.upenn.edu/˜matuszek/cit594-2002/Slides/tree-searching.ppt

www.cis.upenn.edu/~matuszek/cit594-2002/Slides/tree-searching.ppt
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{a,1} {a,1}

{a,2} {a,2} {a,2}

{a,3}

{a,2}

Figure 2.12:
This illustration shows the operation method of the Leader Election Algorithm

P1:
path1 := ⊥;

Pi(i 6= 1):
For all edges e incident on v do ->

receive leader, path,
Set with smallest leader-id,
tuple with shortest path from set with smallest leader-id

Figure 2.13: Leader Election Spanning Tree Algorithm

The system is in the predefined set of legal states, if every node accepts the root node
as leader and the minimal distance to the root node is provided in the write register.
If a node gets corrupted or its predecessor is not reachable, it will become leader
itself propagating its new role until it updates again. If this corrupted node executes
a step again, it might stabilize if the node is not compromised and it eventually gets
a link to root node by its predecessor.

A node will always accept the proposed leader with the lowest id as new leader and if
more than one neighbor propagates the same leader, it will accept the shortest path
to the leader, incremented by one. For example, root node will always propagate
the tuple {a, 0} since its id is a and the shortest path to itself has the length 0. If
the root node gets corrupted, though, it will propagate a wrong id.

For certain scenarios referring to stability measures it might also be interesting to
define sub-trees to be in stable state if the whole sub-tree agrees on one leader that is
root node of the sub-tree while the root node of the sub-tree does not have to accept
the root node of the tree as leader. For comparison of the algorithms, stability is
achieved if every single node is in the predefined set of legal states.
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The interesting comparison is between leader election and the next algorithm, mutual
exclusion. For a serialized execution semantic as used in this thesis, both algorithms
fulfill the same task as discussed in the following section.

Since the legitimate state of each node is built from the length of the shortest path
to the root node as also featured for BFS, the proof for self-stabilization can be
adopted.

2.4.4 Self Stabilizing Mutual Exclusion Spanning Tree Al-
gorithm

The Self Stabilizing Mutual Exclusion Spanning Tree Algorithm algorithm (MutEx)
was first introduced by Edsger Dijkstra in 1962 [Ala03]. As outlined in the dining
philosophers example 2.1, nodes ordered in a ring compete for a common resource.
Each step, one node is chosen by the scheduler. If the predecessor of the node has
a value not equal its own, it will copy the neighbors value and execute one step.
Otherwise it will not do anything. The predecessor of the root-node is the last node
in the ring. If root-node is granted to take a step, it compares its own value with the
predecessors value. In contrast to all other nodes, root will only execute the step,
if the own value is equal to the predecessors value. The new value is the neighbors
value incremented by one modulo the number of nodes in the ring plus one.

a

h

dg

ef

c

b

{a,3} {b,3}

{c,3}

{d,2}

{e,2}{f,2}

{g,2}

{h,2}

Figure 2.14:
This illustration shows the operation method of the Mutual Exclusion Algorithm

P1:
do forever

if x1 = xn then
x1 := (x1 + 1)mod(n + 1)

Pi(i 6= 1):
do forever

if xi 6= xi−1 then
xi := xi−1

Figure 2.15: Mutual Exclusion Algorithm in reference to [Dol00, P.17].
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The system is in the predefined set of legal states, if only one is privileged. One
node is privileged, if

• all nodes have a value smaller than the number of nodes connected in the graph
and

– all nodes have the same value or

– nodes P1 = a to Pi have a value x with i, x ∈ N; i, x ≤
n∑

i=0

Pi and nodes

Pi+n to Pn have a value of x− 1 with i, x ∈ N; i, x ≤
n∑

i=0

Pi+1 or

– nodes P1 = a to Pi have a value 0 with i ∈ N; i ≤
n∑

i=0

Pi and nodes Pi+n

to Pn have a value of
n∑

i=0

Pi.

Comparing leader-election algorithm with mutual-exclusion algorithm, both feature
almost the same strategy for a ring-topology and serialized execution semantics.
While leader-election is in the legal set of states when exactly one leader is elected,
mutual exclusion is in the legitimate set of states when exactly one processor is
eligible to execute one step.

As the example given by Dijkstra features a concurrent execution of processes, the
simulator only executes processes consecutively. By this, deadlocks cannot influence
the systems behavior. The only results measured are affected by fault-propagation
and self-stabilization.

The leader election protocol stabilizes within O (∆D) where

• ∆ is the maximal degree of a node and

• D denotes the diameter of the graph

as presented in [DIM97]. Since the time required to reach an legitimate configuration
is predictable, mutual exclusion is obviously self-stabilizing.

2.4.5 Topologies

The algorithms described above were tested on four different topologies. Each topol-
ogy consists of eight nodes that are connected in different ways. To compare the
impact of different orderings, extreme settings have been chosen.

SERIAL8

a fc gd eb h

Figure 2.16: Topology SERIAL8
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The topology SERIAL8 features eight nodes that are connected in a serial fash-
ion. Each node can only communicate with it’s direct neighbors. The appropriate
adjacency matrix is defined as

MSERIAL8 =



0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0


Since nodes are connected like the musicians in the orchestra example, this leads
to the expectation that faults have the possibility to propagate through all nodes.
Besides, each node, except for the first and the last node, depends on two neigh-
bors. The first and the last node only depend only themselves and their particular
neighbor.

PARALLEL8

a

gfedcb h

Figure 2.17: Topology PARALLEL8

The topology PARALLEL8 on the other hand features maximal parallelism so both
extremes are covered. In this topology seven nodes are connected with one root
node while they can not communicate with each other. Compared to the orchestra
example, each musician would only be able to get in synchrony by looking at the
conductor on a foggy and windy day while all the musicians are deaf.

The topology is defined by the appropriate adjacency matrix

MPARALLEL8 =



0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0


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Each node relies on the root node. On the one hand, faults cannot propagate through
all nodes since the root node does not rely on communication. On the other hand,
all nodes rely on one root node neutralizing the redundancy provided by a second
neighbor.

COMPLEX8

a hd ge fcb

Figure 2.18: Topology COMPLEX8

With COMPLEX8 a complex topology is introduced to simulate an environment
that features a high complexity. This topology also features bidirectional links and
can be expressed as a matrix

MCOMPLEX8 =



0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 1 0 1 1
1 0 1 0 1 0 1 0
1 1 1 1 0 0 1 1
0 0 0 0 0 0 1 1
0 0 1 1 1 1 0 0
0 0 1 0 1 1 0 0



With the topology COMPLEX8 a complex setting is simulated. Comparing the
number of edges, SERIAL8 and PARALLEL8 only feature seven edges each. COM-
PLEX8 on the other hand features 13 edges. Although faults may propagate better
in this environment, redundancy is likely to compensate or even reduce effects of
fault-propagation.

Regarding the algorithms, this is the topology that has different spanning trees for
BFS and DFS. While the topologies presented so far build identical spanning trees
for both BFS and DFS algorithms to observe differences in fault-tolerance measures
influenced only by the algorithms and not by the spanning tree, COMPLEX8 intends
to demonstrate the influence of the spanning tree.
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RING8
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Figure 2.19: Topology RING8

With RING8 a simple topology is introduced to simulate an environment that is
also feasible for the Mutual Exclusion algorithm.

MRING8 =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0


This setting is also famous as token-ring or round-robin. Faults are likely to propa-
gate and redundancy it not available since each vertex relies on its predecessor.

This topology is required by the MutEx algorithm since it requires a token-ring
topology. As a ring suffices the criteria to be also a legal tree, all other algorithms
featured are feasible for this topology, too.

Complexity Issues

Obviously, predictions about fault-propagation and redundancy can be made refer-
ring to the given adjacency matrix. Since this is part of the theoretical background
elaborated in [War06], the relation between the complexity of a given matrix and
the impact on fault-propagation and redundancy is only briefly discussed.

The linear complexity of a matrix can be calculated with

fi =
n∑

i=0

ai,jxj (2.3)

where M = ai,j is the associated adjacency matrix and xi is the indeterminate for
every Pi in S as described in [DLN06, Sec. 2.3].

The complexity is proportional to both fault-propagation as well as redundancy.
Again, the definition of the system model forces the effect on the results. The model
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used in the simulator assumes that faults are distinguishable from correct values.
Furthermore, the parameter faulty fault discussed in the manual in section 4.2.5
rectifies the assumption of nodes preferring false values in presence of true values.
For this reason, the influence of fault-propagation is supposed to be lower than the
advantages of redundancy.

The complexities of the featured topologies are

Topology Complexity

SERIAL8 14
PARALLEL8 14
COMPLEX8 28
RING8 8



3. Fault-Tolerance Measures and
Markov-Chains

After discussing the aspects of self-stabilization, fault-tolerance measures have to
be introduced to measure the quality of different self-stabilizing algorithms under
various environments. Subsequently Markov-chains are introduced to facilitate a
suitable theoretical background for the system model.

3.1 Fault-Tolerance Measures

Since stability is required to grant a high degree of reliability and availability of
services in distributed systems, the concept of self-stabilization is required

• to keep costs for maintenance low due to the ability to regain a legal operational
state autonomously,

• to keep required time for maintenance low (referred to as Mean Time to Repair,
see also 3.1.1) to maximize the time the system is operational and

• to grant a certain level of fault-tolerance measures such as availability and
reliability.

As discussed in the abstract of the thesis, this simulator has been implemented
to determine non-masking fault-tolerance measures. By collecting data about the
fault-tolerance measures of distinct scenarios that are simulated, the quality of self-
stabilization can be determined.

3.1.1 Availability

As this thesis focuses on the discrete-time model, availability can easily be calculated
with

A =
E[uptime]

(E[uptime] + E[downtime])
(3.1)
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where uptime is the number of steps the system was in a specified set of legal states
and downtime means the number of steps the system was not in the specified set
of legal states. To give a more concrete equation, it is reasonable to introduce
abbreviations that are usually used in this field. The preceding equation can also be
expressed as

A =
MTTF

MTBF
(3.2)

The abbreviations are discussed in the following table:

MTTF = avg < TTFi > Mean Time to
Failure

is the medial time for which an
element is operable. This can
be estimated by field studies
for each element. This is also
known as

”
medial uptime“.

MTTR = avg < TTRi > Mean Time to
Repair

is the medial time a faulty el-
ement needs for stabilization.
This is also known as

”
medial

downtime“.
MTBF = avg < TBFi > Mean Time Be-

tween Failure
is the medial for one cycle,
starting operative, operating
till a fault occurs, continuing
with repair measures until op-
erating state is regained.

Obviously, availability is the ratio of the value of the observed uptime of a system
to the aggregate of the observed values of up- and downtime. Therefore

MTBF = MTTR + MTTF .

MTBF

MTTRMTTF

Fault

operational repairing

multiple errors are possible in this period

Figure 3.1: This graph shows the connection between MTTF, MTTR and MTBF

Another analogous definition is given by the IEEE:

3.1.1 Availability is the degree to which a system or component is operational and
accessible when required for use[oEE90].

In our case the terms operational and accessible are referred to a specified legal set
of states. If in a sequence of executions the configuration of the system is in a legal
state for each step, the equations result is 1 since

A =
1

(1 + 0)
= 1 (3.3)
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If a sequence of executions results the configuration of the system to be only in illegal
state, the equation’s result is 0 since

A =
0

(0 + 1)
= 0 (3.4)

Availability Classifications

Availability can be further classified:

• instantaneous (or point) availability,

• average up-time availability (or mean availability),

• steady state availability,

• inherent availability,

• achieved availability and

• operational availability.

According to [Rela, Ch.5], the types of availability are defined as follows:

• Instantaneous availability is the probability, that the system is in the legal set of
states at a random time t. In contrast to reliability, instantaneous availability
also regards information about the systems maintainability represented by the
term m(u):
A(t) = R(t) +

∫ t

0
R(t− u)m(u)du

• Average uptime availability is the proportion of time a system was in the pre-
defined set of legal states:
A(t) = 1

t
+

∫ t

0
A(u)du

• Steady state availability or limiting availability is the limit of the instantaneous
availability as it converges to infinity:
A(∞) = limt→∞A(t)

• Inherent state availability is the type that is featured discussed above and used
for comparison in section 5.1.
AI = MTTF

MTBF

• Achieved state availability uses also preventive maintenance downtime which is
not used in the thesis. With M as mean maintenance downtime it is computed
by
AA = MTBM

MTBM+M

• Operational state availability is the availability measured regarding all sources
of downtime.
AO = Uptime

OperatingCycle
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For further information, please refer directly to the discussion of the observed mea-
sures in section 5.4. For this thesis, the results presented are limited to inherent state
availability Ai. The other subclasses are implicitly covered, like limiting availability
with regards to accuracy (see also Ch. 4.2.1 in the manual), or can be disregarded
like instantaneous availability, where the maintainability factor is not covered by the
simulator.

3.1.2 Reliability

The systemic definition for reliability is:

3.1.1 Reliability is the ability of a system or component to perform its required
functions under stated conditions for a specified period of time [oEE90].

In other words: it is desired to calculate the probability of a system to operate for
a certain amount of time without failure [Relb]. As the time to failure and the time
to repair (explained in subsection 3.1.1) may vary from turn to turn, it is reasonable
to calculate with the particular mean times.

To visualize reliability for discrete systems, a graph is drawn showing the amount of
time the system runs without failure on the x-axis and the according probability on
the y-axis. For many systems this results in a Gauss error distribution curve.

Let

• λ = 1
MTTF

be the failure-rate,

• µ = 1
MTTR

be the repair-rate and

• ν = 1
MTBF

be the medial fault frequency,

and by this follows accordingly with equation 3.2

ν =
λ · µ
λ + µ

[Gei, P.9] (3.5)

While availability is depending on the simulated time, reliability is driven by the
number of failures. Reliability can be calculated with the following equation:

R = e−(λ·t) = e−( t
Q

) = e−N (3.6)

where t is the execution time, Q = 1
λ

= MTTF and N being the number of failures
during the mission.

Dynamic fault-environments as described in section 4.2.2 in the manual might de-
mand the use of the Weibull distribution

R = e−( t
h
)b

(3.7)

where h is the characteristic age-to-failure-rate and b is the Weibull shape factor
as discussed in [ADI03]. Since the simulator uses only static fault-environments in
the scenarios executed, although dynamic behavior is also supported, the former
equation is used.
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3.2 Markov-chains

In 1907, the Russian mathematician Andrey Markov began with his research in the
calculus of probabilities. Nowadays, Markov-chains have a wide field of applica-
tion. They are used in environmental sciences, in mathematics like stochastic and
miscellaneous fields of computer science [Frä, VS].

To introduce Markov-chains, Markov-processes are discussed first which lead to
discrete-time Markov-chains. As discrete-time Markov-chains are sufficient for the
simulator, continuous-time Markov-chains can be disregarded. Following, the prob-
ability mass function is presented to introduce the probability distribution.

The execution E as defined in section 2.1.2 can obviously be represented as a Markov-
chain. Markov-chains define a set of states S = {s1, s2, . . . , sn}. The process starts
in one of these states as the simulator starts in an arbitrary state. For each state i
there is a probability pij to reach state j. The process moves from the initial state
successively from one state to another. Each move is called a step, even if i = j,
which means that the process reaches the same state after executing a step [GS97].

The state-space is defined in reference to section 2.3.2 as set of all reachable states.
For the given system-model every state that is in the set of possible states is reach-
able.

A graph G consists of n ∈ N vertices, referred to as processors Pi. Each processor
either satisfies the predicate P or not, denoted as Pi = 0 if Pi is in an illegitimate
state and Pi = 1 if Pi is in a legitimate state.

Accordingly, there are 2n combinations for the union of the local states of the com-
ponents of a system S. Since these are the possible states and all possible states are
reachable, all these system states from S0 = {0, 0, · · · , 0} to S2n−1 = {1, 1, · · · , 1}
are reachable.

One way to model system behavior are Markov-chains. However, it is reasonable to
introduce Markov-processes first, which are discrete-time stochastic processes.

In a Markov-process the future behavior of the system depends only on the current
state and not on the history. The future states depend on the current state.

3.2.1 A stochastic process {X(t)|t ∈ T} is called a Markov-process if for any
t0 < t1 < t2 < . . . < tn < t, the conditional distribution of X(t) for given values of
X(t0), X(t1), . . . , X(tn) depends only on X(tn):

P [X(t) ≤ x|X(tn) = xn] = P [X(t− tn) ≤ x|X(0) = xn] (3.8)

[Tri82, p.296]

As the simulator features a discrete state space I as already discussed in section 2.3.2,
the system can be modeled as a Markov-chain. Furthermore, as the simulator also
features a discrete parameter space T , the Markov-chain that models the behavior of
the simulator is a discrete time Markov-chain (DTMC) [Tri82, p.337]. This means,
further observations are not required to cope with continuous-time Markov-chains
(CTMC) [Tri82, p.405].
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Consequently, the state of a system is observed at discrete set of time points. Ac-
cording to equation 3.8 follows:

P (Xn = in|X0 = i0, X1 = i1, . . . , Xn−1 = n− 1) = P (Xn = in|Xn−1 = n− 1).
(3.9)

Thus, future states depend only on the current state and are independent of states
previous than the current state.

3.2.1 Probability Mass Function

Let Ssample be the countable sample space with S ⊆ R. Accordingly, the probability
mass function (PMF) is

fx(x) =

{
Pr(X = x) for x ∈ S,
0 for x ∈ R\S (3.10)

For example, a coin toss with 50% probability for each side to be facing the observer
leads to the following PMF:

fx(x) =

{
1
2

for x ∈ {0, 1},
0 for x ∈ R\{0, 1} (3.11)

For Markov-chains this means that for the PMF of the random variable pj(n) the
according equation is:

pj(n) = P (Xn = j). (3.12)

Since the future states depend on the current state, the conditional PMF is required
which is given by:

pjk(m,n) = P (Xn = k|Xm = i), 0 =≤ m ≤ n, (3.13)

where pjk(m, n) denotes the probability, that the process makes a transition from
state j at step m to state k at step n [Tri82, p.337].

3.2.2 Mathematical Representation

pjk(m, n) is also called the transition probability function (TPF) of the Markov-chain.
Since the simulator only features homogeneous Markov-chains and pjk(m, n) is only
depending on the difference n − m, pjk(m, n) is static. This means, the transition
probabilities do not change (depending on the step). Although the simulator uses
static (or stationary) transition probabilities in this thesis, it is implemented to be
capable of dynamic environments, too, as discussed in section 4.2.2 in the enclosed
manual.

The transition-space of a Markov-chain can be depicted with a matrix:

P = [pij] =


p00 p01 · · · p0n

p10 p11 · · · p1n
...

...
. . .

...
pn0 pn1 · · · pnn


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While index i references state si as current current state, index j references state sj

as following state. Accordingly states have a probability of pij to reach the following
state. Note that i = j is possible which means, that although a step is executed the
configuration does not change (with regards to the message queue as discussed in
section 2.3). Since the current state has to be left each step, the sum of all outgoing
edges representing the transition probabilities adds up to 1 such that the sum of all
elements of each row pi0 + . . .+pin of the matrix is 1. The sum of all incoming edges
p0i+. . .+pni represented by the matrix’ columns has a value greater or equal 0. If the
sum of all probabilities of all incoming edges equals 0, the state cannot be reached
except as initial state. Since the whole state space, regarding the system model used
in this thesis, is reachable due to transient faults, the sum of the probabilities of the
incoming edges for each distinct node must be greater 0.

Obviously, the originating state can be regained after executing a step. These self-
targeting edges are represented by the diagonal from p00 to pnn denoted in the
previous matrix.

3.2.3 Markov-Chains representing Self-Stabilizing Algorithms

To return to self-stabilization, the proofs for self-stabilization mentioned in section
2.4 can be directly applied to the appropriate Markov-chains.

Lemma 3.2.1 In a system S consisting of n ∈ N, n > 0 processors P1, · · · , Pn and
unidirectional connections ei,j such that each processor reads at least from one other
processor, in every fair execution, the probability to converge to the legal set of states
is greater zero: p > 0.

Proof:

1. If the system is in a legitimate state (that is S2n−1 = {1, 1, · · · , 1}) and no
transient faults occur, the corresponding TPF claims that the corresponding
line in the matrix representing the transition space sums up to 0. Obviously,
once a legitimate state has been reached and no faults occur, the system will
remain in the legitimate state in the absence of transient faults.

2. If the system is not in the predefined legitimate state, in every fair execution
one node will execute a step. Each execution leads to a new state after a finite
amount of time. In every possible sequence of executions E the legitimate
state S2n−1 is reached after a finite amount of time. The system converges to
the predefined legitimate state and by this is self-stabilizing.

As discussed in 2.3.2, it is not important, whether the sequential execution of pro-
cessors is arbitrary interleaving or concurrent. Considering different semantics like
maximal parallelism only effects the number of bits that are able to flip per step.
Yet, being in the illegitimate set of states forces the system to execute steps until
the legitimate state is reached, disregarding the execution manner.
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3.2.4 Graphical Representation

The topologies featured in this thesis consist of eight processors each. Since the state
space is 28 = 256 accordingly, the Markov-chains representing the topologies consist
of 256 elements.

The following table indicates the behavior for larger execution semantics regarding
the number of featured processors:

Exec. Sem./#Nodes 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
2 1 3 6 10 15 21 28
3 1 4 10 20 35 56
4 1 5 15 35 70
5 1 6 21 56
6 1 7 28
7 1 8
8 1

SUM: 4 8 16 32 64 128 256

While the columns represent the total number of processors featured, the rows rep-
resent the number of nodes selected by the daemon. Obviously it is not reasonable
to use higher execution semantics than number of nodes since no more processors
can execute than processors are existing in the topology.

The entries are the gain from one value for execution semantics to the next higher
value. For example, with an execution semantics of 0, a node can only reach itself.
Using serialized execution semantics it can reach all states that differ in one bit.
Since the length of the tuple containing the bits is equal to the total number of
processors in the graph, a node can reach as many states as are nodes in the graph
plus its originating state.

The last row equals the states reachable from each single state using the maximal
applicable value for execution semantics. To calculate the overall number of edges
featured in the appropriate Markov-chains, this value has to be multiplied with 2
since the weighted edges are unidirectional because probabilities differ for the ways
forth and back and also the value has to be multiplied with the number of processors
used as indicated in the top row. For example, a topology featuring eight nodes
requires using maximal execution semantics of eight requires a Markov chain with
256 states and 4096 unidirectional edges.

Each entry can be calculated with the following recursive algorithm:
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routine(Entryi,j)
Entryi,j = subroutine(0,Entryi−1,j),
Entryi,j.

subroutine(Result,Entryi,j)->
V alue = routine(Entryi,j), New Result = Result + V alue,
New Entryi,j = Entryi−1,j−1,
if

New Entryi,j == 1 ->
Result + 1; true ->
subroutine(New Result,New Entryi,j).

Figure 3.2: Calculation of the reachability matrix.

This property of Markov-chains is also known as Pascal’s triangle.

Bernoulli Process

A Bernoulli process is a discrete stochastic process and a special case of Markov-
chains. Let p be the possibility that a particular incident happens, e.g. at a coin toss
that the coin shows head or at a dice throw that the dice shows an even number as
shown in equation 3.11. In both cases the possibility for each event is p = 50% = 0.5.
So the counterpossibility is q = 0.5 accordingly since the sum of all possibilities is 1
as stated in chapter 3.2.2.

A Bernoulli process delivers a countable infinite sequence of results. Let X = 1
denote success and X = 0 denote failure. Further let q = 1 − p be the counter
possibility with which a failure will occur such that q is the possibility that the
system will converge to a specified legal set of states. The process can be described
by a sequence of random numbers {X1, X2, X2, . . .}.

Obviously, a sequence of steps executed, defined as execution E in section 3.2 by the
simulator has analogue features as a Bernoulli Process.

3.3 Conclusion

In the following, a simple topology is introduced and all introduced techniques are
applied as done for the featured topologies. To cope with the high degree of com-
plexity as discussed in section 3.2.4, a simple topology is used for demonstration.

Topology

The topology used consists of three nodes a,b and c that are connected bidirectional
such that a can communicate with b and a can communicate with c but b and c have
no common communication channel.
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a

b c

Figure 3.3: The graph representing the exemplified topology.

Mexample1 =

0 1 1
1 0 0
1 0 0


Algorithm

Since the example does not satisfy the requirements of mutual exclusion as it is
not in the shape of a unidirectional ring, one of the three algorithms left has to be
chosen. As DFS was the first algorithm implemented, it is chosen for this example.

The spanning tree is represented by the following graph:

a

b c

{a}

{a,b} {a,c}

Figure 3.4: The graph representing the exemplified DFS spanning tree.

Markov Chain

The graph consists of three nodes. According to section 3.2 the appropriate Markov-
chain has 23 = 8 states

Si = {a, b, c} = {P1, P2, P3}

S0 = {0, 0, 0}
S1 = {1, 0, 0}
S2 = {0, 1, 0}
S3 = {1, 1, 0}
· · ·
S7 = {1, 1, 1}
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The first bit represents the status of the node with the lowest ID, the second bit
represents the bit with the second lowest ID and so on. If a processor Pi is in
a legitimate state as shown in the figure above (i.e. a has the value {a}, b has
the value {a, b} and c has the value {a, c}) it is represented with the bit set to 1.
Otherwise the bit is set to 0.

0,0,0

0,0,1

0,1,0

0,1,1

1,0,0

1,0,1

1,1,0

1,1,1

Figure 3.5: The Markov-chain representing the example.

The green state is the legitimate state where all local states satisfy the predicate
P . Since execution semantics are set to 1, only states that differ in maximal 1 bit
are reachable. Following table 3.2.4 in reference to column 2, each state can reach
itself (column 2 row 1) and three neighbors (column 2 row 2). Setting the execution
semantics to 2 (column 2 row 3), three more neighbors would become reachable.
The appropriate graph is not presented since it is hard to view as a whole.
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0,0,0

0,0,1

0,1,0

0,1,1

1,0,0

1,0,1

1,1,0

1,1,1

1/3

2/3 1/3

1/3

1/32/3

2/3 1/3

1/3

Figure 3.6:
The Markov-chain representing the example disregarding fault-probabilities.

To present a valid Markov-chain, fault-probabilities have been disregarded to exem-
plify self-stabilization. Furthermore it is assumed, that the system starts in state
S0 = {0, 0, 0}.

Obviously, the sum of the weights of all outgoing edges is always 1. Furthermore,
several states are unreachable in this model. Since nodes b and c rely on node a, the
root node has to acquire the legitimate state first. Chances are 1

3
since each node

has the same possibility to execute a step. After a is granted an execution step it
stabilizes and global state reaches state {1, 0, 0}.

From now on, two paths are possible to reach the legitimate state. Either b executes
a step and stabilizes or c is granted execution and reaches the legitimate state. Yet,
chances are 1

3
again that the simulator will remain in the current state since a can

also execute a step. Note, that these are the medial chances. Actual chances depend
on the aging strategy supported by the scheduler as discussed in section 4.2.8 in the
enclosed manual.

After one of the children executed a step, chances are 1
3

for the remaining node in
an illegitimate state to execute a step, disregarding if the current state that followed
{1, 0, 0} is {1, 1, 0} or {1, 0, 1}.

The MTTR for this model (starting in {0, 0, 0}, disregarding the scheduler behavior
and neglecting fault-probabilities) is calculated as follows:

medial number of steps required to reach {1, 0, 0}: 3
medial number of steps required to reach {1, 1, 0} or {1, 0, 1}: 2
medial number of steps required to reach {1, 1, 1}: 3
medial number of steps required: 8

Things details out are the fault-probabilities and initial states other than {0, 0, 0}.

There are two kinds of faults that can occur in a graph:
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• node faults and

• edge faults.

For this example, each fault-possibility is set to 1% = 0.01 which means, that one
of 100 executions or transmissions throws a fault that is not catched since only
non-masking fault-tolerance is covered.

To start with the root node, the fault-possibility is 0.01 since the root node does not
depend on its neighbors. Obviously this makes the edges eb,a and ec,a obsolete for
the measurement of fault-tolerance properties.

The fault possibilities for the child nodes b and c is calculated equally:

• 0.01 that parent node is in illegitimate state and since delivers a wrong status
which leads to an illegitimate state.

• 0.01 that the result delivered by the parent leads to an illegitimate state.

• 0.01 that the node itself is malfunctioning and sets value to the illegitimate
state.

The interesting part is, that these values must not be simply added since faults
can also occur in the presence of faults as shown in figure 3.1. Analogously to the
calculation of the resulting resistance in combinatorial circuits, the resulting fault-
probability for nodes b and c is calculated as following:

1− ((1− Pparent fault) · (1− Pcom fault) · (1− Pown fault))
= 1− ((1− 0.01) · (1− 0.01) · (1− 0.01))
= 1− (0.993) = 1− 0.970299 = 0, 029701

The appropriate weighted Markov-chain is not presented since the bidirectional edges
have two values and the whole structure is too complex. Nevertheless, the resulting
availability can be calculated:

• a is 99% of the time in its legitimate state,

• b is 97.0299% of the time in its legitimate state and

• c is 97.0299% of the time in its legitimate state.

The resulting availability is 0.99 · 0.970299 · 0.970299 = 0.93206534790699. This
means, that approximately 93, 2% of the steps executed the system is in the green
labeled legitimate state and the availability of the system is 93, 2%.

As another example section 5.3 offers an approach traversed to its full extent.
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4. Erlang and SiSSDA

The simulator for self-stabilizing distributed algorithms (SiSSDA) is available on the
CD-ROM enclosed with this thesis and a detailed discussion is presented in the
enclosed manual. This chapter deals with theoretical issues only.

4.1 Choice of Tools

Several technologies are required for the implementation of a simulator. Due to
limited capabilities of the language that is most commonly used at the University
of Oldenburg, Java, an alternative language was chosen that surpasses especially by
means of distributed computing. Further advantages of the language of choice are

• rapid prototyping (the final version is the third branch of development),

• effective deployment of distributed techniques,

• high degree of reliability [Arm, P.29],

• scalability of scenarios due to the ability to cope with dynamic environments,

• performance 1,

• hot code-update,

• dynamic size of all objects,

• sufficient importance for industrial sector and

• availability to the public since Erlang is released under the Erlang Public
License (EPL).

Furthermore, Erlang is a lazy purely-functional programming language to develop
distributed fault-tolerant soft real-time non-stop applications.

1http://www.sics.se/˜joe/ericsson/du98024.html

http://www.sics.se/~joe/ericsson/du98024.html
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4.1.1 Erlang

Erlang was chosen for implementation as programming language and runtime envi-
ronment. Erlang was chosen for the implementation of the simulator due to built-in
support for concurrency control, distribution and fault tolerance.

One of the inventors of Erlang is Joe Armstrong, who is currently employed by the
Swedish Institute of Computer Science and still contributing to Erlang. The Ericsson
Computer Science Laboratory (cs-lab) where Erlang was initially developed was shut
down in 2002. Since then Erlang was continued first by Bluetail and afterwards by
Alteon who bought Bluetail.

Erlang was originally a modification of the logical language Prolog and its evolution
was mostly influenced by the requirements of Ericsson, who required a language that
is optimal for communication-related tasks. One advantage of Erlang is the practice
of light-weight processes with minimal overhead which grants massively scalable
systems such as the web-server YaWS (Yet another web-server) 2.

The language was named after the danish mathematician and engineer Agner Krarup
Erlang and is not an abbreviation of Ericsson Language.

Figure 4.1: Agner Krarup Erlang (*Jan/1/1878 †Feb/3/1929)

The simulator also uses the OTP (Open Telecom Platform) , a potent library that is
enclosed in Erlang. The OTP features many required functions such as list handling
and a pseudo-random number generator. It is similar in scope to .NET but limited
to Erlang.

If further environments should demand verification of the source code, there is also a
free verification tool available, called Erlang Verification Tool (EVT) 3 [Mar06] that
facilitates the approval of correctness due to requirements formulated in a specifi-
cation language. Furthermore, the tool Dialyzer (Discrepancy Analyzer for Erlang
Programs) facilitates development of complex programs and is a reasonable exten-
sion to use4.

Erlang’s main advantages are features that are not common for programming lan-
guages but rather for operating systems:

• concurrent processes,

2http://www.sics.se/˜joe/apachevsyaws.html
3http://www.sics.se/fdt/vericode/evt.html
4http://www.it.uu.se/research/group/hipe/dialyzer/

http://www.sics.se/~joe/apachevsyaws.html
http://www.sics.se/fdt/vericode/evt.html
http://www.it.uu.se/research/group/hipe/dialyzer/
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• scheduling,

• memory management,

• distribution and

• networking.

A short introduction is presented in section 4.1 of the enclosed manual. Yet it is
advised to consult standard literature that is also mandatory for a qualified under-
standing of Erlang.

4.1.2 Design and Conception

The simulator was implemented to cope with physically distributed topologies but
is also able to simulate a distributed environment on a single computer. Other
languages would rather intend a sequential execution limiting the use of distribution
to the simulation since the execution semantics used for this thesis are serialized.
In the face of real world behavior (the world is distributed and parallel [Arm, P.9]),
applicability to similar scenarios and future purposes the simulator was implemented
using processes. The reliability of the results basically relies on

1. the random-number generator and

2. reliability of the programming language used.

As covered earlier in [Arm, P.29], Erlang is sufficiently reliable. Besides, Erlang
is fault-tolerant and can also detect and report errors. For the random-number
generator the common method to test the reliability is to implement a χ2 test.

χ2 Test

The χ2 test is a test for the goodness of fit 5, (it tests, how well a statistical model
fits a set of observations) that is calculated as shown in the following equation:

χ2 =
n∑

i=1

(hi − hE)2

hE

(4.1)

hi is called the Null Hypothesis for category i. All possible events are categorized.
Each category has an expected value hE and a measured value hi.

To test the random-number generator a set of ten categories was chosen. The
source code is available on the enclosed CD-ROM in folder /svn/erlang/chisqr.
The test has to be compiled first with c(chisqr). from within the Erlang shell
or with erlc chisqr.erl from the console. The method can be executed with
chisqr(INTEGER). where INTEGER is the number of runs.

The results indicate that the random-number generator is highly reliable to generate
numbers that are sufficiently random.

Another more practical related observation of random-number generation is the num-
ber of steps each process was granted execution. After each simulation, processes
report the number of steps they were chosen. These values only show minimal
deviations.

5http://biomet.oxfordjournals.org/cgi/reprint/66/3/585.pdf

http://biomet.oxfordjournals.org/cgi/reprint/66/3/585.pdf
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4.2 Settings

To gather results, topologies and algorithms presented in section 2.4 were used in
connection with certain settings adjusted in the configuration file described in section
4.2 in the enclosed manual.

The succeeding chapter compares

• the topologies based on the behavior of the algorithms and

• the algorithms based on the behavior of the topologies.

For all tests the same configuration was used that is given in chapter 4.2 of the man-
ual, except for the tests concerning the mutual exclusion algorithm. As the results
for the employed parameters indicate, the setting for accuracy was not strict enough
as the resulting Figure 5.11 indicates. The graphs have to be strictly monotonic
decreasing.



5. Simulation Results

After describing the theoretical way of deriving fault-tolerance measures and moti-
vating the solution to use a simulator since complexity of certain scenarios makes
calculation infeasible as discussed in [War06], case studies presented in section 2.4
are compared by means of topologies and algorithms used. The results have been
acquired with the simulator whose implementation is a core artifact of this thesis.

For further information on the simulator the enclosed manual is helpful. Not only
the practical method of operation is discussed regarding several theoretical issues.
Also instructions are presented on how to append new algorithms and topologies
and even dynamic fault-environments are introduced.

Notably, measurement of reliability was skipped. One major difference in measuring
availability and reliability is the initial state. While availability is measured with
the use of arbitrary initial states, reliability requires the system to start in a legiti-
mate state to measure the attributes MTTF, MTTR and MTBF. Since an average
execution consists of approximately 500000 steps and the legitimate state for the
scenarios tested is reached within the first 1000 steps (according to section 4.2.1 in
the manual regarding the minimal number of steps), the influence is lower than 1

500

so differences to the graphs representing the degree of availability would almost not
be visible.

5.1 Practical Results

A scenario consists of

• one algorithm,

• one topology and

• a set of parameters, centralized in the global configuration file.

Since the influence of the configuration can be almost neglected (with regards to
section 5.3), the scenarios are combined by means of the topology used in chapter
5.1.1 as well as by means of the algorithm used as presented in chapter 5.1.2.
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5.1.1 Comparing Topologies

In this section, topologies are compared. On each topology the three algorithms
BFS, DFS and LE were executed since these algorithms can cope with trees in
general. In contrast, MutEx requires a special case of a tree that is in the shape of
a unidirectional ring as featured by the topology RING8. On this topology, all four
algorithms are feasible and compared.

The results are measured until the degree of availability is < 1%. Reaching this
limit in a scenario is a sufficient stop criterion since the number of steps required to
measure availability decreases rapidly and reliability of results cannot be guaranteed
for fault probabilities too high.

On the one hand, results are not precisely visible if a certain low degree is reached.
On the other hand, the simulation requires a more subtle granularity set for accuracy
when high fault-probabilities are simulated. A third argument for limiting off further
simulation when a certain degree of availability is reached, is the direct comparison
of the value for fault-probability that accounts to reaching this limit.

The values labeled as global fault possibility (GFP) refer to all fault possibilities
set to one value. For example, if GFP is set to 0.1, each node has a probability
of 10% to converge to an illegitimate state and each edge has a chance of 10% to
cause an erroneous submission which also leads to an illegitimate state if no further
redundancy is provided.

The first topology presented to compare algorithms is SERIAL8.
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Figure 5.1: Comparing algorithms BFS, DFS and LE with topology SERIAL8.

While availability drops below 1% for LE at a GFP of 13%, DFS reaches the stop
criterion at a GFP of 17% and BFS, thanks to the redundancy provided by bidirec-
tional edges, even executes with a GFP of 22% until availability is too low.
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Obviously, BFS is more endurable to faults in this kind of topology while LE suffers
soonest from fault-propagation.

While fault-propagation was an important factor for the previous topology, the fol-
lowing topology disregards this influence since all nodes only rely on the root node
and also redundancy is abolished.
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Figure 5.2: Comparing algorithms BFS, DFS and LE with topology PARALLEL8.

Disposing these two effects obviously levels the fault-tolerance to a common base.
The winning margin of LE is minimal, yet DFS gains endurance not only in contrast
to other algorithms, but also compared to its own previous result. A direct compar-
ison presented in the next section will provide further more exact information.

The topology COMPLEX8 features a high degree of complexity as presented in
table 3.1.1, where fault-propagation and redundancy reach a higher level than in the
previous topologies.
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Figure 5.3: Comparing algorithms BFS, DFS and LE with topology COMPLEX8.

Again BFS benefits from redundancy which the other algorithms are deprived of.
Yet fault-propagation seems to have a great influence on DFS, while LE is almost
perfectly in the middle between the other algorithms. This topology leads to the
greatest differences so far. In contrast to the preceeding topology where the algo-
rithms showed a similar degree of availability, differences in this environment are
even greater than measured in the first topology.

Notably, the sequence of reaching the stop criterion is not the same comparing this
topology to SERIAL8. While in topology SERIAL8 first LE, then DFS and finally
BFS reached the limit, the sequence for topology COMPLEX8 is DFS, LE and then
BFS.

Using topology RING8 for a scenario enables also the MutEx algorithm to participate
in the comparison.
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Figure 5.4:
Comparing algorithms BFS, DFS, LE and MutEx with topology RING8.

Compared to all other algorithms which show a similar rate of availability, Mu-
tEx shows to be more endurable. Nevertheless, accuracy settings were different for
MutEx since a stricter setting was mandatory as discussed in section 5.3.

5.1.2 Comparing Algorithms

After differences of the topologies on the resulting availability have been tracked, the
same results are put in a different order to compare the influence of the algorithms.

The first algorithm that is executed on several topologies is BFS.
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Figure 5.5:
Comparing topologies SERIAL8, PARALLEL8 and COMPLEX8 with algorithm
BFS.

While PARALLEL8 and SERIAL8 are in the midfield with only a little difference,
RING8 obviously suffers from fault-propagation and a lack of redundancy. In con-
trast, COMPLEX8 grants a high degree of availability and reaches the stop criterion
not until a GFP of 35%. The high degree of interconnectability leads to such a
tremendous result since nodes have multiple possibilities to converge to a legitimate
state in contrast to RING8 topology.

The next algorithm that is compared is DFS.
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Figure 5.6:
Comparing topologies SERIAL8, PARALLEL8 and COMPLEX8 with algorithm
DFS.

The difference to BFS is obvious. DFS performs best in PARALLEL8 and worst
in COMPLEX8. The degree of availability of almost inversely proportional to the
complexity provided by the topology, yet RING8 performs better than COMPLEX8.

The following figure shows the fault-tolerance of the three topologies with LE.
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Figure 5.7:
Comparing topologies SERIAL8, PARALLEL8 and COMPLEX8 with algorithm
LE.
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Obviously PARALLEL8 and COMPLEX8 deliver a similar high degree of availability
while RING8 and SERIAL8 have a similar low level. Again, the effects of fault-
propagation versus redundancy become clearly visible in this setting.

5.2 Theoretical Results

To exemplify theoretical results, simpler scenarios had to be chosen. For this reason,
the model used in [War06, Ch.4] is adopted in combination with DFS.

As discussed in the paper, the approach consists of three steps:

1. calculation of the transition probability matrix for transitions between config-
uration classes due to a single computation step of a process,

2. determination of the transition probability matrix for transitions between con-
figuration classes due to fault steps and

3. combination of both matrices to obtain a transition probability matrix repre-
senting an appropriate Markov chain of the entire system [War06, P.255].

The model instanced represents a system consisting of three processors P1, P2 and
P3 connected as presented in the following figure.

P_1

P_2 P_3

Figure 5.8: Theoretical Example Markov Chain Preparation

The appropriate adjacency matrix is

MAM =

0 0 0
1 0 1
1 1 0


After traversing through the three steps, the resulting transition probability matrix
is given by

MTPM =



0.6344 0.0160 0.0160 0.0001 0.3331 0.0001 0.0001 0.0001
0.2221 0.4124 0.0001 0.0318 0.0001 0.3331 0.0001 0.0001
0.2221 0.0001 0.4124 0.0318 0.0001 0.0001 0.3331 0.0001
0.0001 0.1111 0.1111 0.4441 0.0001 0.0001 0.0001 0.3331
0.0001 0.0001 0.0001 0.0001 0.9357 0.0318 0.0318 0.0001
0.0001 0.0001 0.0001 0.0001 0.1111 0.8406 0.0001 0.0477
0.0001 0.0001 0.0001 0.0001 0.1111 0.0001 0.8406 0.0477
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.9991


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This matrix can also be represented as Markov-chain:

Figure 5.9: Theoretical Example Markov Chain

Using the German tool jAndrei by Fabian Grüning 1, the matrix can be tested for
for validity and ergodicity. The model is available on the enclosed CD-Rom under
/Tools/papermain.mc.

Further simulation shows the resulting distribution for the model:

1http://www.eco-software.org/software

http://www.eco-software.org/software
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Figure 5.10: Theoretical Example Markov Chain Result

5.3 The MutEx-Scenario

After executing the scenarios, values obtained for MutEx indicated a different be-
havior than the other algorithms. While all graphs shown above featured a strictly
monotonic development, the graph representing the MutEx algorithm showed a wavy
not monotonic development for higher GFPs. Referring to the number of steps that
had to be executed to acquire the availability for a certain GFP, there was no notable
difference to the other algorithms. So the number of steps that have to be executed
to reach a certain degree of stability is similar for all algorithms.

Yet, comparing the development of single execution scenarios featuring one GFP as
presented in figure 4.1 in the enclosed manual, showed a different kind of conversion.

While development of BFS, DFS and LE is like a swinging around the desired value
comparable to a pendulum, MutEx converges to a certain value approaching strictly
from the value 1.0 like a cushioned fall (as described in [Ng]).

This leads to a lower degree of swinging-in convergence for the values obtained for
MutEx and hence to a premature achievement of the accuracy guards. Therefore,
accuracy parameters have to be clamped down. Comparing the two graphs presented
in the following figure, accuracy parameters for the monotonic graph are obviously
sufficiently precise.
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Figure 5.11: Mutual Exclusion measured with two sets of accuracy settings.

5.4 Conclusion

The theoretical approach presented in section 5.3 shows that complexity grows expo-
nential proportional to the number of nodes and edges. Calculating models consist-
ing of three nodes suffices to deliver a high level complexity that is barely processable.
To cope with large models, it is reasonable to use a simulator as presented in section
5.1.1.

Another advantage of the simulator is, that approximations as used in the theoret-
ical approach, that hinder the accuracy of the results obtained, are obsolete. Yet,
accuracy is an important matter for the simulation, too, as discussed in Ch. 4.2.1
in the manual.
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6. Conclusion

6.1 Summary

In this thesis, we implemented a simulator to determine fault-tolerance measures for
different self-stabilizing distributed algorithms in the presence of transient faults in
non-masking fault-tolerant systems. In particular, the aspect of self-stabilization as
well as the derivation of appropriate Markov-chains were discussed in reference to
the cited papers and sources to motivate the necessity of the simulator.

Further, several representative topologies were tested thoroughly in combination
with the algorithms to compare properties of these scenarios. It was shown, that
fault-propagation and redundancy have a converse effect on the resulting availability
and all parameters of a scenario are important for the outcome.

Also, discussion of execution semantics has been shown to be an important com-
ponent for the practical appliance. Furthermore, the simulator features dynamic
environments that were not regarded by the theoretical approach. Using Erlang
as programming language for implementation has proven useful. After implement-
ing two prototypes, a third implementation-branch was started that surpasses its
predecessors in performance, design and code-efficiency.

Analyzing the results of the different settings for the case-studies was insightful and
showed the profitableness of the simulator.

6.2 Outlook

The implemented simulator offers a wide range of possibilities for further investi-
gation. It is not only expandable by means of topologies and algorithms, but, for
instance, simulation was only executed with serialized execution semantics. Further-
more, environmental influences as featured by the fault-environment class were used
neither.

But not only the scope was not exploited to its full extent. Classification of simulated
scenarios by means of characteristic behavior was not part of this thesis, too.

Further areas of investigation might be:
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• a topology-validator that automatically checks a given topology for the feasi-
bility for all algorithms

• further distributed algorithms

– byzantine failure algorithm

– ant colony algorithm

– hill climbing algorithm

– Viterbi algorithm

• dynamic fault-environments featuring burn-in and burn-out phases or seasonal
influence for example

• employment of algorithms using waiting strategies that are already available

• the effect of (dynamic) execution semantics > 1
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Figure 6.1: Simulation Results
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