
SiSSDA

Simulator for Self-Stabilizing Distributed Algorithms
to Determine Fault-Tolerance Measures

Manual

Carl von Ossietzky Universität Oldenburg

This Manual is part of the Diploma-Thesis

Simulation of Distributed Self-Stabilizing Algorithms
to Determine Fault-Tolerance Measures

Group System Software and Distributed Systems

Contents

1 Foreword 1

2 Setup 3

2.1 Windows . 3

2.2 Linux . 4

2.3 Development Environment . 5

3 Getting Started Quickly 7

4 Getting Started Slowly 9

4.1 Using Erlang . 9

4.1.1 Standard Literature . 9

4.1.2 Required Commands . 10

4.2 Configuration . 11

4.2.1 Accuracy . 11

4.2.2 Fault Environment . 14

4.2.3 Execution Semantics . 16

4.2.4 Fault Injector . 16

4.2.5 Fault Probability Correction 16

4.2.6 Arbitrary Initial Values . 17

4.2.7 Logging of Events . 17

4.2.8 Scheduler Behavior . 17

4.2.9 Server . 18

4.2.10 Version . 18

4.2.11 Verbose . 18

4.2.12 Topologies . 18

ii Contents

4.3 Execution Flow . 18

4.3.1 Initialization . 21

4.3.2 Execution . 26

4.3.3 Post Processing . 28

5 How to extend the Simulator 31

5.1 Adding new Topologies . 31

5.2 Adding new Algorithms . 33

5.2.1 Spanning Tree Algorithms . 33

5.2.2 Value Obtaining Client Algorithm 35

5.2.3 Observer Specific Functions 35

5.3 Adding new Fault-Environments . 36

5.4 Tweaks . 37

Bibliography 39

1. Foreword

This Manual is intended for users and developers that use the Simulator for Self-
Stabilizing Distributed Algorithms (SiSSDA). Steps required to run the simulator
are discussed in chapter 2. To keep up with Erlang-style introduction, this manual
features a quick-start guide as well as a slow-start guide.

• If you like to run the simulator and get a first impression, take a look in chapter
3.

• For users that like to take a deeper look into and behind the simulator, chapter
4 is most suitable as important adjustments are explained.

• For developers that are already acquainted with the simulator chapter 5 will
be interesting for adjusting and extending the simulator to individual require-
ments. The simulator is built to cope with appropriate topologies as well
as new algorithms and even dynamic fault-environments that meet individual
needs.

If you like to get used to Erlang and discover the advantages of distributed-computing,
please refer to section 4.1, where a list of standard literature is given and the most
important features are briefly explained.

2 1. Foreword

2. Setup

To run the simulator, one or more computers are needed that run on Windows NT
(including NT 4.0, 5.0 2000, 5.1 XP, 6.0 Vista) or Linux. For testing the simulator,
a heterogeneous network was used containing PCs running Windows 2000, Debian
3.0 Sarge and Ubuntu 6.06 Dapper Drake at the same time running Erlang R11B1.

Please mind, that for Ubuntu 6.10 Edgy Eft there are known issues when trying
to compile Erlang R11B1. Different solutions to this problem are discussed in the
mailing list1.

Another issue using Erlang is, that for cryptographic features an installed version of
OpenSSL is required2. As those features are not required by the simulator since the
random-number generator included is used instead of the one provided by OpenSSL,
this will not be mentioned in the following guide.

Please mind, that, although the simulator was implemented to run in a network, the
single nodes are only simulated by threads such that a graph can also be simulated
on one single PC. There is no notable improvement using multiple computers with
execution semantics set to 1 (please also refer to section 4.2.3) since server, client
and fault-injector execute successively. Nevertheless, future algorithms that require
higher execution semantics and more processor ressources and maybe even a contin-
uous time model featured by a new scheduler might encounter a massive impact on
the time required for execution leading to favoring a distributed execution of client
ressources.

2.1 Windows

Obtain the actual version of Erlang from http://www.erlang.org/download.html by
clicking in the second row in the column labeled Windows binary (incl. documenta-
tion) on yes.
After downloading double-click the file to install and follow the on-screen instruc-
tions.

1http://www.erlang.org/pipermail/erlang-questions/2006-November/023941.html
2http://www.openssl.org/

http://www.erlang.org/download.html
http://www.erlang.org/pipermail/erlang-questions/2006-November/023941.html
http://www.openssl.org/

4 2. Setup

For secure communication within a LAN-environment Erlang requires a cookie to be
set up, which contains exactly the same phrase on each computer. The cookie has
to be set up as a file labeled .erlang.cookie in the path the variable $HOME points
to. Usually this is C:\Documents and Settings\user name , where user name is
a placeholder for your current user name.

For Windows, a special executable is available in C:\Program Files\erl*\bin
(* indicating the version) labeled werl.exe. This file has the feature of tab-completion
which is missing in the DOS-shell version.

2.2 Linux

If you are using a packet-manager such as apt, you might want to use it to get
Erlang. If you are using apt,

1. run apt-get update to get current status

2. run apt-cache search erlang to check whether you have the necessary repos-
itories.

3. if this does not show you the package erlang-base

• open /etc/apt/sources.list with a text-editor

• append the lines

deb http://neutronic.mine.nu/ unstable/

deb-src http://neutronic.mine.nu/ unstable/

to the list

• save the file and close the editor and

• restart at top of list.

4. The important packages are

• erlang-mode - a plug-in for emacs,

• erlang-base - the runtime environment,

• erlang-base-hipe - HiPE (High Performance Erlang)3, a highly optimized
version that is not officially supported by the simulator and is not a
required, but recommended package for optimizing the simulator and

• erlang-src - source files for the system (*.erl, *.hrl).

5. Install accordingly with
apt-get install packetname
Note that it might be reasonable to build dependencies first with
apt-get build-dep erlang erlang-base

To compile erlang manually, please ensure that you have the packages

• openssl

3http://www.it.uu.se/research/group/hipe/

http://www.it.uu.se/research/group/hipe/

2.3. Development Environment 5

• unixodbc-dev

• make

• gcc

properly installed. Obtain the current version of Erlang from http://www.erlang.
org/download.html, extract the source code with tar -xzvf otp_src_R*B-*.tar.gz

(where * indicates the version) and execute

• sudo ./configure

• sudo make

• sudo make install

Now you should be able to run Erlang from command-line by simply entering erl.
To compile Erlang files (*.erl), please run erlc *.erl from command line.

2.3 Development Environment
Since Ericsson does not deliver an IDE as Sun does with Beans for Java4, one
reasonable way to implement with Erlang is using Eclipse5 enhanced by the ErlIDE
plug-in6. Eclipse is available for Linux and Windows. For information on installing
and running Eclipse and Erlang, please refer to the corresponding websites since
changes regarding the use or installation are possible.

The plug-ins Texlipse7 and Subclipse8 have been used for development, too.

• Eclipse is a free IDE developed by IBM as successor to Visual Age. It is
designed as an integrated development environment (IDE) for Java and in-
tends to use the Concurrent Versions System (CVS) as repository. For this
project Erlang has been chosen as programming language for its advantages
in distributed concurrent computing, and Subversion (SVN) was chosen as
repository for its advantages in version control in contrast to CVS.

• ErlIDE is a plug-in for Eclipse to gain functionality of Erlang within the IDE.
With ErlIDE, syntax-highlighting and a console are available. One important
feature, the debugger, is missing yet but will be released soon according to
ErlIDE developer Vlad Dumitrescu.

• SubClipse is a plug-in for Eclipse enhancing the IDE by giving the functionality
to handle subversion repositories from within the IDE making external tools
such as RapidSVN (Linux) or TortoiseSVN (Windows) obsolete. The final
version of this thesis is available from the SVN repository

https://moradin.svs.informatik.uni-oldenburg.de/svn/phoenix/

If it is not reachable anymore, please feel free to contact me at nils.muellner@
gmail.com

4http://www.netbeans.org/
5http://www.eclipse.org
6http://erlide.sourceforge.net/
7http://texlipse.sourceforge.net/
8http://subclipse.tigris.org/

http://www.erlang.org/download.html
http://www.erlang.org/download.html
https://moradin.svs.informatik.uni-oldenburg.de/svn/phoenix/
nils.muellner@gmail.com
nils.muellner@gmail.com
http://www.netbeans.org/
http://www.eclipse.org
http://erlide.sourceforge.net/
http://texlipse.sourceforge.net/
http://subclipse.tigris.org/

6 2. Setup

• Texlipse is a plug-in to handle Latex-files with Eclipse. Also the tool Texnic-
Center 9 has been used as sidekick to develop this thesis. As LATEX -frame the
wiss-doc package by Roland Bless has been used10.

9http://www.toolscenter.org
10http://tm.uka.de/˜bless/wissdoc.tar.gz

http://www.toolscenter.org
http://tm.uka.de/~bless/wissdoc.tar.gz

3. Getting Started Quickly

To run the simulator follow these steps:

• Ensure that Erlang is set up as described in chapter 2.

• Copy the source files (CD-ROM/SiSSDA/*.*) into a directory of your choice.

• Adjust the hostnames in global_config.hrl to the hostname of your PC.
These are given by the variables

1 −de f i n e (f a u l t i n j e c t o r , { f a u l t i n j e c t o r , fault injector@HOSTNAME}) .
2 −de f i n e (se rver , { s e rver , server@HOSTNAME}) .

Simply exchange the HOSTNAME to the hostname the desired service is ex-
ecuted on.

• Start a console and change path according to where you copied the simulator-
files, e.g.

• Compile the sources with erlc *.erl

• Start the server from within the directory where the source-code is available:

– erl -sname server

– server:start().

• Follow the on-screen instructions:

– Choose an algorithm (for example for Depth-First Search enter 2.) and

– choose a topology (for example, for serial8 enter 1.).

• When asked, start sufficient number of clients each in its own shell from within
the directory where the source-code is available:

– erl -sname client# where each client has a unique number

– client:start().

8 3. Getting Started Quickly

• After the environment is set up properly, the simulator only requires the fault-
injector to join to begin with the simulation. The fault-injector is started
with

– erl -sname fault_injector

– fault_injector:start().

from within the directory where the source-code is available

• When the simulation is finished, each node shuts itself down automatically.

For further information the next chapter is recommended.

4. Getting Started Slowly

To reasonably use the simulator, many parameters have to be taken into account.
Not only the algorithms are available in more than one distinct version, but also
the behavior of the scheduler and the desired accuracy for example are important
factors that must not be disregarded.

In the following section Erlang will be introduced. To minimize redundancy of
information with the thesis, references will be given at corresponding places.

4.1 Using Erlang

Although Erlang is a potent language, it is quite easy to learn. Most standard
literature is available online. Since a complete introduction is unfeasible for this
thesis, only basic characteristic features are mentioned.

4.1.1 Standard Literature

For a complete guide please refer to the following literature:

• The present standard book is Concurrent Programming in Erlang [AVWW96]
by Joe Armstrong, Robert Virding, Claes Wikström and Mike Williams from
1996. Although this book is quite old, most of the important features are still
discussed in a sufficiently actual manner. The first chapter was published free
of charge and contains an introduction to the most important features1.

• The coming up standard book is Programming Erlang [Arm07] by Joe Arm-
strong. As this book will be released in July 2007, is could not be used for this
thesis. Yet, it will be the designated successor to Concurrent Programming in
Erlang.

• Another good source to deepen knowledge in Erlang is the PhD thesis by
Joe Armstrong [Arm03], which is available at http://www.sics.se/˜joe/thesis/
armstrong thesis 2003.pdf.

1http://www.erlang.org/download/erlang-book-part1.pdf

http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf
http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf
http://www.erlang.org/download/erlang-book-part1.pdf

10 4. Getting Started Slowly

• The site http://wiki.trapexit.org/ delivers many examples like the cookbook
series released by O’Reilly.

• http://www.planeterlang.org/ is a portal where professionals from the Erlang
community exchange knowledge and make it public in blogs. Many current
projects and their difficulties are discussed in this portal. In contrast to the
mailing list, planeterlang is a platform only for professionals.

• The standard beginners guide is available at http://www.erlang.org/doc/doc-5.
5.3/doc/getting started/part frame.html. This tutorial is intended for very
beginners and can be accomplished within one day. A similar introduction is
available at http://www.erlang.org/course/course.html, featuring also a his-
toric review of Erlang.

• The site http://www.erlang-projects.org/ was established by Mickaël Rémond,
the author of the french book Erlang programmation [RA03]. It contributes to
popular projects developed in Erlang like the Jabber-Server ejabbered.

4.1.2 Required Commands

For using the simulator, only few features are mandatory to know.

1. Every input is ended with a dot.

2. The decimal separator is a dot. If asked for a decimal with 0 < INPUT < 1,
0.1. is a possible input. The first dot is the separator and the second dot
finishes the input.

3. Variables start with a capital letter.

4. Macros are referred to with a leading question mark.

5. A tuple is a set of attributes with a distinct number of elements, framed by
curly braces. For example A = {a, b, c}. is a tuple.

6. A list is a set of attributes with a variable number of elements, framed by
brackets. For example B = [a, b, c]. is a list. To get the first element of a list,
a pipe operator is used. For example [First|Rest] = B. returns First as a
and Rest as [b, c].

7. Message passing is executed with an exclamation mark in the format
{server, server@hostname} ! Message.

The first part is a tuple, containing the process name and the according ma-
chine the referenced process is executed on. The exclamation mark is equiva-
lent to erlang:send(Dest, Msg)-> Msg and Message is the message that is
passed. Commonly Message is a tuple itself since usually multiple parameters
are transfered (using lists for message passing is considered to be bad style).
Unlike Java, a tokenizer is obsolete. The pattern matching guards are also
able to look into tuples such that the first parameter in a passed tuple is often
used to indicate the tuples purpose [AVWW96, section 1.3].

http://wiki.trapexit.org/
http://www.planeterlang.org/
http://www.erlang.org/doc/doc-5.5.3/doc/getting_started/part_frame.html
http://www.erlang.org/doc/doc-5.5.3/doc/getting_started/part_frame.html
http://www.erlang.org/course/course.html
http://www.erlang-projects.org/

4.2. Configuration 11

8. Erlang has no variables. Variables are instantiated constants. That means, a
process has to be re-instantiated before a variable descriptor can be assigned
again.

9. The logical and respectively && is expressed as a comma , in Erlang.

10. The logical or respectively || is expressed as a semicolon ; in Erlang.

11. The logical not respectively ! is expressed as / in Erlang such that not equal
in Erlang is expressed as / =.

12. mod respectively modulo is expressed as rem (remainder) in Erlang.

13. The ≥ and ≤ operators are expressed such that the spike of the arrow points
to the equal sign a ≥ b

∧
= a >= b

∧
= b =< a.

For using the simulator, only the first two points have to be taken into account.

4.2 Configuration

The whole configuration of the simulator is done in the file global_config.hrl. The
.hrl file extension means Erlang header. There are no functions given in header files.
The following parameters are available to adjust:

name possible values default value
accuracy 1000000 >= X >= 0.000001 1
accuracy field length([0, 0, ..., 0]) >= X >= length([0, 0]) [0, 0, 0, 0, 0]
accuracy min run length X ∈ N, X >= 1 1000
env default default
exec sem X ∈ N, X >= 1 1
fault injector {fault injector,

fault injector@hostname} to be adjusted
faulty fault X ∈ R, 1.0 >= X >= 0.0 0
init arbitrary true, false true
log file desired log-file name logged events.log
logging enable, disable disable
scheduler behav random, ordered random
server {server, server@hostname} to be adjusted
version any string with length of 3 "1.0"
verbose true, false, topology, client, sched false
tops list of topologies please refer to sec. 5.1

4.2.1 Accuracy

The accuracy of a simulation is defined by the parameters

• accuracy,

• accuracy_field and

12 4. Getting Started Slowly

• accuracy_min_run_length.

The desired accuracy is reached, if the maximal difference of the values measured as
availability in the last defined steps is smaller than a certain value and a minimal
number of steps has been executed:

if
(max(accuracy field)−min(accuracy field)) ∗ 1000000 =< accuracy,
Stepsexecuted >= accuracy min run length →

accuracy = true.

With Length = length(accuracy field) being the length of the list, the latest
Length measured values for availability are recorded. This means, being in step
N , the list accuracy field contains the calculated availabilities for the steps N ,
N − 1, . . . , N − (Length− 1).

If the maximal difference between the values in accuracy field is less or equal the
macro accuracy multiplied with 1000000, and at least accuracy min run length
number of steps were executed, adequate stability is reached.

For example, after the execution of N steps with N ∈ N, N >= Length, the list
accuracy field contains Length values. If the simulator was started with initial
arbitrary values (please refer to subsection 4.2.6) and the predefined legal set of
states was not reached until step N , the list accuracy field will only consist of
zeros. The first criteria for reaching the desired degree of stability is, that at least
every field in accuracy field was initialized by the simulator such that at least
Length steps were executed.

Since the predefined set of legal states can only be reached in the absence of fur-
ther transient faults, it is reasonable to introduce a helping variable that forces the
simulator to execute a minimal number of steps that eventually exceeds the size of
Length. This variable is labeled accuracy min run length with
accuracy min run length ∈ N, accuracy min run length >= Length.

If within accuracy min run length number of steps stability was not reached and
the simulator was started with arbitrary values, obviously the corresponding avail-
ability will be 0. To maximize accuracy, the length of accuracy field might be in-
creased while the value for accuracy is decreased. Figuratively, the following graph
shows the impact of the accuracy parameters mentioned.

4.2. Configuration 13

0,00000000000000000000

0,50000000000000000000

1,00000000000000000000

1,50000000000000000000

2,00000000000000000000

2,50000000000000000000

3,00000000000000000000

3,50000000000000000000

4,00000000000000000000

4,50000000000000000000

5,00000000000000000000

5,50000000000000000000

6,00000000000000000000

Steps

A
va

ila
bi

lit
y

* 1
0

Figure 4.1:
This graph shows the measured availability for the first 20.000 steps with {DFS,
SERIAL8, GFP 0.02}.

This graph was the result of a run that was used to measure availability. It shows
the availability for each of the first 20.000 steps, using

• an accuracy of 1,

• an accuracy field with the length of 5 and

• an accuracy min run length of 1000.

Obviously, the first results show a value of 0, since several steps are required to
converge to the predefined legal set of states. Since the accuracy field is filled with
zero values again in these first steps, the maximal difference between these values
is zero, too. In step 74 the system has stabilized, so the value for availability for
step 74 is 1/74 = 0.135. This means, that the maximal difference for the values of
availability of the steps 70, 71, 72, 73 and 74 is 0.135. The accuracy of 1 must not
be greater than this maximal difference multiplied with 1000000 to satisfy the first
stability criteria. Since 0, 135 · 1000000 = 1351351.351 and 1351351.351 > 1, the
first criterion for stability is not met.

This procedure is repeated in step 75 with the values of availability of the steps 71,
72, 73, 74 and 75 accordingly until the maximal difference is smaller than 1.

The complete execution of the simulation of the configuration described above con-
sisted of 565399 steps. The minimal bounding box defined by accuracy (vertical
edges) and accuracy field (horizontal edges) would not be visible in the graph 4.1
since it is too small!

The first occurrence of a legal state is depending on the algorithm, the topology and
especially the fault-possibilities. For example, in a sufficiently large topology with

14 4. Getting Started Slowly

relative large values for fault-possibilities, chances are low for the system to reach the
legal set of states. To measure these almost infinitely small values, an accordingly
large number of steps has to be simulated. This can be achieved by setting the
value for accuracy min run length to an appropriate value. The tests performed in
this thesis indicate, that a value of 1000 is adequate and that the values measured
become unreliable for a measured availability below 1%. This Assumption is also
supported by the number of steps executed. For low values of fault-possibilities,
few steps are executed. The number of steps executed to meet the stability criteria
rises until a certain point that is characteristic for the combination of algorithm and
topology. After this point, the number of required steps decreases according to a rise
of fault-possibility values. If too few steps are executed, results become unreliable,
leading to a resulting availability of 0 if the predefined set of stable states was not
reached within accuracy min run length number of steps.

4.2.2 Fault Environment

Although only a static fault-environment was required, the possibility of changing
parameters during runtime according to runtime environments that are defined by
the values for the parameters

• Algorithm,

• the complete configuration labeled Client Data and

• the execution semantics Exec Sem

is provided. While changing the algorithm during runtime is strictly not advised
since data-structures of configurations are not verified to be compatible, it might be
reasonable to adjust the configuration and even the execution semantics to simulate
environmental influences such that the simulator is not only influenced by internal
parameters. While a static environment where both node and edge fault-possibilities
do not change during execution was intended to use for the thesis, the possibility
to extend the simulator with further environments was implemented to cope with
possible future demands. The default environment implies a graph, where fault
possibilities do not change during execution as shown for a configuration-example in
the following graph:

4.2. Configuration 15

123456789 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

A B CDEFG

Step

Fa
ul

t P
os

si
bi

lit
y

Node

Figure 4.2:
This graph exemplifies the default fault-environment for eight nodes showing the
first 40 steps.

123456789 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

1,000

A B CD
FG

Steps

Fa
ul

t P
os

si
bi

lit
y

Node

Figure 4.3:
This graph exemplifies a dynamic behavior for eight nodes showing the first 40
steps. It was not implemented since it is only an example for the possibilities for
the fault-environment feature.

In contrast, a dynamic behavior can be related on either algorithmic behavior or
random behavior or a combined strategy based on the input. The following graph
even features a canonical behavior such that a distinct wave is repeated after a

16 4. Getting Started Slowly

certain time. This behavior models delayed impact in the different nodes due to
a phase shift of one calculation step. Possible scenarios for this example shown in
figure 4.3 are likely to be time triggered events like seasons or day- and night-time
that influence the nodes on different time steps due to spatial intervals between the
nodes.

Although this graph features an environmental influence that is independent of the
current or past configuration, environments featuring burn-in and burn-out-phases
or other environments depending on the current and / or past configuration are
feasible.

Parameters that can not be presented in an illustrious fashion are the alteration of
the algorithm and the execution semantic accordingly although they can be changed
alike.

4.2.3 Execution Semantics

Being also referred to as Hamming Distance in the thesis (section 2.3.2) with a
theoretical background, this option was statically set to a value of 1 for all tests
featured in this thesis. Although the implementation was not part of the task, it has
been implemented for future purposes.

The parameter indicates the maximal number of nodes that are allowed to execute
parallel in the same execution step. This leads to the problem of interlocking de-
pendabilities, solved with time-out events that lead to a local state that is not part
of the predefined legal set of states.

Assuming that a local network environment is used to run the simulator, the timeout
has been set to 0.005 seconds (line 113 in client.erl, after 5 ->), thus leading to a
tremendous increase for the global execution time the more interlocking dependabil-
ities have to be attended.

Since this feature was not part of the task, values greater 1 have not been tested
thoroughly and a correct execution can not be guaranteed.

4.2.4 Fault Injector

The value set for fault_injector consists of one tuple containing two parts. The
first one is the name of the process that grants the desired services. The second
one is the node where the antecedent process is available on. The interesting part
is the name after the @ sign, where the term HOSTNAME has to be replaced by
the current hostname. If you do not know your hostname, simply start an Erlang
console and enter
inet:gethostname().

This will return a tuple {ok, "HOSTNAME"} showing your hostname which you have
to insert as described above.

4.2.5 Fault Probability Correction

Earlier versions contained the possibility that despite the presence of a transient
fault a node eventually gets the correct value. Since this behavior is not common for
real systems, this value was outsourced to the global variable faulty fault which is

4.2. Configuration 17

applied to node- and edge-faults before execution. The term faulty fault derives
from the impression, that a false fault delivers the right result.

For example, if the original global fault possibility (GFP) equals 0.1 and faulty fault
is set to 0.1, this leads to a resulting GFP of 9% since every tenth fault will deliver
the correct result.

For the simulated tests the variable faulty fault was set to zero, assuming that a
64-bit register has 264 = 18446744073709551616 possible values and that only one
of them leads to the correct result. This means for a real system the possibility to
achieve a legal state in presence of a fault has a possibility of 1

18446744073709551616
=

5, 4210108624275221700372640043497 ∗ 10−20 which is sufficiently small to be disre-
garded.

4.2.6 Arbitrary Initial Values

If the value init arbitrary is set to true, the simulator will use arbitrary values for
the initial configuration of the nodes status. Otherwise, if set to false, nodes will
start with a status that is in the predefined set of legal states.

It is reasonable to set this value to true if a stable state is unlikely to be reached
and the accuracy described in subsection 4.2.1 should not depend on the value
accuracy min run length but only on the other two variables defining the accu-
racy. On the other hand it is reasonable to set this value to false, if the GFP
is set sufficiently low and the accuracy should not be determined by the value of
accuracy min run length.

Another reason to start with the system in a legitimate state is the measurement of
reliability as discussed in section 3.2.1 in the enclosed thesis.

4.2.7 Logging of Events

The variable log file simply contains the desired name of the log-file. The variable
logging can be set to enable oder disable. This variable is set to disable by default
since recording of the configuration leads to a tremendous rise of execution time.
This should only be set to enable if the configuration of each step is required for
further analysis. Please also refer to sections 5.4 and 4.3.3, where possibilities of
post processing are discussed and keep in mind that for the logging of one million
steps an available hard disk space of about 500MB is required. Successive execution
of configurations will not overwrite previous results since new results are always
appended to the file. For this reason the file has to be deleted before hard disk space
runs out. Alternatively, the term append in line 58 in the file server.erl may be
deleted, changing from an appending to an overwriting behavior.

4.2.8 Scheduler Behavior

Although not explicitly required, two schedulers were implemented. If scheduler behav
is set to random, the scheduler uses an aging strategy that rises the possibility of be-
ing chosen for execution according to waiting time. This strategy is common for real
systems. The random scheduler satisfies the terms of liveness, fairness and safety as
indicated by the almost equal number of steps each node executes.

18 4. Getting Started Slowly

For special scenarios, as conceivable especially for the mutual exclusion algorithm,
a second scheduler has been implemented, choosing the nodes ordered by their id,
starting with node a, continuing with node b and so on until the node with the
highest id is reached, continuing with node a afterwards again.

4.2.9 Server

Analogously to subsection 4.2.4, this variable has to be set to point to the computer
where the server application is available.

4.2.10 Version

The variable version was used to differ between different branches in development.
It indicates the version number of the simulator, which, due to the fact that the
development finished, is "1.0".

4.2.11 Verbose

The verbose option leaves many possibilities to trace the execution of steps during
runtime.

true All possible output is printed.
false No output is printed.
topology During initialization, the initial working configuration

will be printed (phase topology in server.erl).
client Each client will print each step of it’s configuration,

regardless if the node executed a step
or was idle (phase 4 in client.erl).

sched The fault injector will print a list of elected
nodes each step (phase 1 in fault injector.erl).

Please mind, that I/O-operations are quite costly in contrast to the rest of the
simulation and moreover the current value measured as availability for every 1000th

step is printed in any event (please also refer to subsection 4.3.1).

4.2.12 Topologies

The given topologies are explained thoroughly in the thesis in section 2.4.5. The
adding of further topologies is explained in section 5.2 in this manual.

4.3 Execution Flow

The execution flow basically contains three parts:

• initialization to gather and prepare data,

• execution to use the data collected in the previous phase to aggregate results
and

• post processing to use and interpret the information delivered by the simulator.

4.3. Execution Flow 19

The first step is to compile the source code. This can be done by typing erlc *.erl

from the console:

phoenix@mystra:~$ cd run/mystra/

phoenix@mystra:~/run/mystra$ erlc *.erl

./client_algorithm_mutex.erl:70: Warning: the guard for this clause evaluates to ’false’

./client.erl:100: Warning: the guard for this clause evaluates to ’false’

./client.erl:133: Warning: the guard for this clause evaluates to ’false’

./fault_injector.erl:76: Warning: this clause cannot match because a previous clause at line 74 always matches

./fault_injector.erl:97: Warning: this clause cannot match because a previous clause at line 93 always matches

./fault_injector.erl:102: Warning: the guard for this clause evaluates to ’false ’

./matrix_init_bfs.erl:109: Warning: the guard for this clause evaluates to ’false’

./matrix_init_dfs.erl:106: Warning: the guard for this clause evaluates to ’false’

./matrix_init.erl:54: Warning: the guard for this clause evaluates to ’false’

./matrix_init_le.erl:108: Warning: the guard for this clause evaluates to ’false ’

./matrix_init_mutex.erl:104: Warning: the guard for this clause evaluates to ’false’

./server.erl:94: Warning: the guard for this clause evaluates to ’false’

./server.erl:240: Warning: the guard for this clause evaluates to ’false’

./server.erl:260: Warning: the guard for this clause evaluates to ’false’

phoenix@mystra:~/run/mystra$

Figure 4.4:
The compiler is intended to throw several warnings that may be disregarded.

These warnings may be ignored as they are thrown due to the predefinition of the
verbose variable.

Alternatively files can be compiled with c(filename) singularly from within the Er-
lang shell. Note, that the extension .erl is not used and header files (.hrl) must
not be compiled.

Compiling the sources generates .beam files. Beam stands for Björn’s (respectively
Bogdan’s) Erlang Abstract Machine. These files are executable from the Erlang
shell. To start an Erlang shell, usually the command erl is executed from a Linux
console or the file werl.exe is executed under Windows NT. Since the simulator was
implemented to cope with real distributed systems, the Erlang network interface is
required. For that reason, a designated server node is initialized by starting Erlang
on both, Linux and Windows, with additional parameters:

phoenix@mystra:~/run/mystra$ erl -sname server

There has been a recent discussion about the use of the -sname and -name parameters
on the mailing list. The simulator was built using strictly the -sname parameter for
communication in a local area network, although it should also be able to run in a
wide area network using the -name parameter. For further information please refer
to [AB, section 3.4] and [Hof, slide 13].

20 4. Getting Started Slowly

To start the simulator, the first part to be executed is server.erl. This is achieved
by entering

server:start().

from the previously started server node. The system can now be reached as process
server on the node server@hostname with the command

{server, server@hostname} ! message.

The simulator consists of 20 files. 18 of them are used for the simulator. They are
relying on each other according to the following figure:

server

client

fault_injector

client_algorithm

client_algorithm_bfs

fault_injector_bfs

fault_injector_dfs

fault_injector_le

fault_injector_mutex

client_algorithm_dfs

client_algorithm_le

client_algorithm_mutex

matrix_init

matrix_init_bfs

matrix_init_dfs

matrix_init_le

matrix_init_mutex

server:start().

client:start().

fault_injector:start().

Figure 4.5:
This figure shows how the single components are used. The dotted lines indicate
communication, straight lines indicate hierarchical usage. Boxes are classes, ovals
are start-routines. Red classes are main classes, green classes are interfaces and
yellow classes are subclasses.

The remaining two files are k.erl and fault_env.erl. The class k can be used to
prematurely shutdown the server, fault-injector and client applications by entering
k:k(). as discussed in section 5.4. Looking at the source code, the class k.erl

consists only of the function k which uses the global variable server from the header
file and sends a token labeled kill to the server which ensuing initiates the shutdown
sequence.
The class fault_env.erl features only one static fault environment as described in
sections 4.2.2 and 5.3.

After starting the server, the simulator starts gathering and generating information
required for initialization:

4.3. Execution Flow 21

phoenix@mystra:~/run/mystra$ erl -sname server
Erlang (BEAM) emulator version 5.4.12 [source] [threads:0]

Eshell V5.4.12 (abort with ^G)
(server@mystra)1> server:start().
%%%
%%%
%%%%% %%%%%
%%%%% SiSSDA %%%%%
%%%%% %%%%%
%%%%% v "1.0" %%%%%
%%%%% %%%%%
%%%%% %%%%%
%%%%% Welcome to the Simulator for %%%%%
%%%%% Self-Stabilizing Distributed Algorithms %%%%%
%%%%% %%%%%
%%%%% SERVER %%%%%
%%%%% %%%%%
%%%
%%%
%%%%% INITIALIZATION-PHASE 1: CHOOSE ALGORITHM %%%%%
%%%
true
%%%%% The following algorithms are available: %%%%%
%%%%% [1]bfs
%%%%% [2]dfs
%%%%% [3]le
%%%%% [4]mutex
%%%%% Please enter the appropriate number [n.]>1.

Figure 4.6: The server application initially offers a choice between algorithms.

Now that the server has been started, initialization begins.

4.3.1 Initialization

The initialization consists of five sub-phases which are successively traversed in
server.erl.

• The first phase is labeled alg (Phase == alg ->; server.erl line 62). In this
phase, all possible algorithms are taken from the global variable tops (please
also refer to section 5.2) and then listed in alphabetical order as shown above.
To choose one of these algorithms, the appropriate number indexing each al-
gorithm has to be entered followed by a dot as mentioned in subsection 4.1.2.
A wrong input will repeat the phase until a valid algorithm is chosen.

22 4. Getting Started Slowly

client1

client2

...

clientn

server fault_injector

algorithm

Figure 4.7: Initialization Step 1: Entering Algorithm

• Now that an algorithm has been chosen to be simulated, an appropriate topol-
ogy is required. This phase is labeled topology in server.erl (Phase ==

topology ->; line 88). The simulator offers only topologies that are defined
as feasible for the chosen algorithm as discussed in section 5.1.

client1

client2

...

clientn

server fault_injector

topology

Figure 4.8: Initialization Step 2: Entering Topology

%%%
%%%%% INITIALIZATION-PHASE 2: CHOOSE TOPOLOGY %%%%%
%%%
%%%%% The following topologies are available: %%%%%
%%%%% [1]COMPLEX8
%%%%% [2]PARALLEL8
%%%%% [3]SERIAL8
%%%%% [4]RING8
%%%%% Please enter the appropriate number [n.]>

Figure 4.9:
Subsequently the server offers a selection of appropriate topologies according to the
previously chosen algorithm.

• If, for example, Mutual Exclusion was chosen as algorithm, the only topology
offered is ring8. As in the previous step, the choice can be referenced by the
according number.

• In the next phase, fault possibilities can be entered. This operation is carried
out in phase augmenting (Phase == augmenting ->, line 118). For the user’s

4.3. Execution Flow 23

convenience, a batch processing routine was implemented to assign global fault
possibilities for nodes and edges. The routine accepts y., yes., n. and no. as
tokens. If answered in the affirmative, the user may first enter the global node
fault possibility (GlobalNFP). Otherwise local node fault possibilities (Local-
NFP) are required. The format for NFPs may be either integer or decimal
smaller or equal one and greater or equal zero. For example, 0. is a valid ar-
gument as well as 0.9999999999. is a valid argument. Erlang has an accuracy
for decimals of up to 20 digits past the dot. Please note that the last dot is
always interpreted as finish of the command.
Entering invalid values returns to the very beginning of this step. This option
has proven reasonable since accidentally entered wrong values can be corrected
entering intentional invalid types in the sequent step.

client1

client2

...

clientn

server fault_injector

NFP

Figure 4.10: Initialization Step 3a: Entering NFP

• Analogously edge fault possibilities can be entered. If the type-check fails, the
whole phase starts over again with requesting NFPs again.

client1

client2

...

clientn

server fault_injector

EFP

Figure 4.11: Initialization Step 3b: Entering EFP

24 4. Getting Started Slowly

%%%
%%%%% Do you want to use GLOBAL NFP? [y. / n.]:>y.
%%%%% Please enter GLOBAL NFP [0.000000. =< r =< 1.000000.]:>0.15.
%%%%% ACCEPTED %%%%%
%%%%% Do you want to use GLOBAL EFP? [y. / n.]:>y.
%%%%% Please enter GLOBAL EFP [0.000000. =< r =< 1.000000.]:>0.15.
%%%%% ACCEPTED %%%%%
%%%%% Topology successfully initialized. %%%%%
%%%
%%%%%% PLEASE CONNECT 8 CLIENTS...

Figure 4.12:
The third phase requires information about node fault probabilities (nfp) and edge
fault possibilities (efp).

• The last two steps require a sufficient number of clients and one fault-injector
to connect. This phase follows directly to the previous phase augmenting and
is labeled connect clients (Phase == connect_clients ->; line 130).
In contrast to the server and the fault-injector that are precisely defined in the
header to guarantee their reachability, client nodes are implemented without
the need of a static address since future algorithms might demand dynamic
addresses. Analogously to the server, clients are initialized as shown in the
following figure. After each client has connected to the server he shows a mes-
sage with the unique id the server allocated and the server shows a message
with the process id (pid) that connected as client as well as the appropriate
id.

client1

client2

...

clientn

server fault_injector

connect

connect

connect

connect

Figure 4.13: Initialization Step 4: Connecting Clients

After a sufficient number of clients has connected, the server asks the user to
start the fault-injector.

client1

client2

...

clientn

server fault_injectorconnect

Figure 4.14: Initialization Step 5: Connecting Fault-Injector

4.3. Execution Flow 25

If a client fails to connect to the server or the server application is not ready
yet, no id will be given to the client. In that case it is reasonable to shut down
the client and first start the server and ensure proper communication.

(client4@talona)17> client:start().
%%%
%%%
%%%%% %%%%%
%%%%% SiSSDA %%%%%
%%%%% %%%%%
%%%%% v "1.0" %%%%%
%%%%% %%%%%
%%%%% %%%%%
%%%%% Welcome to the Simulator for %%%%%
%%%%% Self-Stabilizing Distributed Algorithms %%%%%
%%%%% %%%%%
%%%%% CLIENT %%%%%
%%%%% %%%%%
%%%
%%%
true
%%%%% Connected successfully. This node has role of node a
(client4@talona)18>

Figure 4.15:
After the data-structure has been completely initialized, clients connect with their
process id (pid) and get the role of a node. In this figure, the client gets the role of
node a.

%%%%% Client a is now identified as process <4753.39.0>
%%%%% Please connect 7 more clients.
%%%%% Client b is now identified as process <4754.39.0>
%%%%% Please connect 6 more clients.
%%%%% Client c is now identified as process <4755.39.0>
%%%%% Please connect 5 more clients.
%%%%% Client d is now identified as process <4756.39.0>
%%%%% Please connect 4 more clients.
%%%%% Client e is now identified as process <4757.39.0>
%%%%% Please connect 3 more clients.
%%%%% Client f is now identified as process <4758.39.0>
%%%%% Please connect 2 more clients.
%%%%% Client g is now identified as process <4759.39.0>
%%%%% Please connect 1 more clients.
%%%%% Client h is now identified as process <4760.39.0>
%%%%% SUFFICIENT NUMBER OF CLIENTS CONNECTED %%%%%
%%%
%%%%% PLEASE START THE FAULT-INJECTOR NOW %%%%%

Figure 4.16:
Each time a client has connected, an id is allocated to the process and the remaining
number of clients is given.

• Analogously to server and clients, the fault-injector is started as shown below
in the last phase of the initialization (Phase == fault_injector -> line 158).

26 4. Getting Started Slowly

After starting the fault injector, the simulator will automatically start with the
execution. To observe the status, every 1000th step the current availability is
printed in the server-window. Additional output is available according to the
setting of the verbose variable (please refer to subsection 4.2.11).

phoenix@talona:~/workspace/erlang/demoX02$ erl -sname fault_injector
Erlang (BEAM) emulator version 5.4.12 [source] [threads:0]

Eshell V5.4.12 (abort with ^G)
(fault_injector@talona)1> fault_injector:start().

Figure 4.17:
Starting the fault-injector is the final step required to initialize the simulator. After
starting the fault-injector, processing of simulation starts immediately.

%%%%% FAULT-INJECTOR CONNECTED SUCCESSFULLY %%%%%
%%%
%%%%%
%%%%% SYSTEM IS NOW RUNNING. PLEASE WAIT...
%%%%%
%%%%%
%%%%% STEP: 1000 LEGAL: 0.239960

Figure 4.18: After starting the fault-injector, simulation begins.

4.3.2 Execution

The execution consists of six global phases. The following figures show the processing
for one step traversing through each of the six phases.

client1

client2

...

clientn

server fault_injector

ready

ready

ready

ready

Figure 4.19: In step0 clients propagate that they are ready to execute one step.

4.3. Execution Flow 27

client1

client2

...

clientn

server fault_injector

select

selection

Figure 4.20:
In step1 the server passes the current configuration to the fault-injector. Based on
the transferred data, the fault-injector chooses an appropriate number of clients.

client1

client2

...

clientn

server fault_injector

grant

no_grant

no_grant

no_grant

Figure 4.21:
Each client gets a token from the server according to the previous step. If the token
reads idle, the client listens to other clients requests. Otherwise the token is a list
and reads grant such that results can be acquired.

client1

client2

...

clientn

server fault_injector

update

idle

idle

idle

acquire status

Figure 4.22:
According to the passed tokens, each client listens or executes one step.

client1

client2

...

clientn

server fault_injector

result

result

result

result

Figure 4.23: After executing one step, clients propagate their results to the server.

28 4. Getting Started Slowly

client1

client2

...

clientn

server fault_injector

fault_env

1: aggregate clients’ results

2: aggregate environmental influence

Figure 4.24:
The user may interfere with results gathered by using the fault-environment. First,
the server aggregates the developed results and passes them to the fault-environment.
Afterwards, the fault-environment may influence the results and passes them back
to the server. By default the results are not influenced in this step.

client1

client2

...

clientn

server fault_injector

update

update

update

update

Figure 4.25:
Finally, the current status is reported to client nodes This step might become nec-
essary if algorithms require the clients to operate based on current data and the
topology is not static.

4.3.3 Post Processing

Post processing suffers from various restrictions. First, Erlang writes only as binary.
Every term exported to a file has to be reformatted to a binary first

Bytes = term_to_binary(New_Server_Data),

file:write(File, Bytes);

before being flushed to the log-file. Furthermore, several possibilities to continue
with the developed results are possible like using Matlab or GNUPlot. These have

4.3. Execution Flow 29

different formats. The initial idea was to let MatLab calculate the stability criteria
discussed in 4.2.1. During development it was considered to be more reasonable to
calculate these in Erlang to save execution time. Another reason was, that network
interfaces of MatLab are insufficient and there is no known way to connect MatLab
to Erlang during the execution of the simulator.

The simulator can be used in different ways.

• The appropriate value measured for availability is printed directly to the con-
sole. Simulating several scenarios as done for this thesis can be used to generate
appropriate graphs disposing the feature of recording the simulation steps.

• Using the logging function grants the user to post process the simulation of one
scenario. The results logged are accessible from the recorded file (see section
4.2.7). The file can be processed using standard Linux commands like

strings logged_events.log | less > output.log

to stream the data into a new file satisfying appropriate format requirements.

• Furthermore, it is easy to stream any kind of parameter the simulator uses into
a file. As shown in Figure 4.1 for example, recording the availability for each
step shows the leveling off results measured. For this graph, not the whole
data structure but only the the variable

Elem = lists:last(New_Acc_Field),

has been recorded, transformed as described above after simulation and fi-
nally copied into OpenOffice Calc, a free spread sheet analysis tool, for post
processing.

30 4. Getting Started Slowly

5. How to extend the Simulator

As intended for the scenarios featured in this thesis, the simulator uses a limited
range of attributes. The accuracy is limited to a certain point to demonstrate the
different scenarios for comparison reasons, the fault-environment is set to a static
behavior and the output is quite restrictive.

Yet, the simulator can be used for a lot more purposes. For example, the speed
with which fault-tolerance measures swing into a certain region is characteristic for
distinct scenarios. The composition of a spanning tree without further simulation
might be interesting. Even client behavior can be observed live during runtime since
input-/output-operations need a lot of time compared to the simulation.

For these reasons the files global config.hrl and fault env.erl have been implemented.

5.1 Adding new Topologies

Adding of new topologies is quite simple. All topologies are defined in the file
global conf.hrl within the variable tops. It is recommended to use a unique name for
each topology as an identifier. The topologies do not need to be ordered since they
are ordered automatically by their name.

Each topology is a list itself, consisting of

1. an identifier of the topology,

2. a list containing the algorithms that are eligible for the corresponding topology
and

3. the tuples representing the connections between the processors.

The tuples are intended to consist of a parent node and the according child node. For
example {b, a} is a typical tuple which denotes node a to be able to send information
to node b.

Another requirement is that the root node has to be labeled a. The nomenclature of
the nodes is not static, so nodes are permitted to get significant names that satisfy

32 5. How to extend the Simulator

the definition of an atom in Erlang as introduced in [AB, ch.2.3]. The label of the
topology (the first part) as well as the algorithms are atoms.

To append new algorithms,

1. append a comma after the last topology,

2. after the comma open a new list,

3. enter the three necessary items to the list:

(a) identifier (atom),

(b) eligible algorithms (list of atoms) and

(c) as many tuples as required (tuples containing two atoms).

4. close the list.

-define(tops,
[

[serial8,
[dfs, bfs, le],
{a,b},{b,a},
{b,c},{c,b},
{c,d},{d,c},
{d,e},{e,d},
{e,f},{f,e},
{f,g},{g,f},
{g,h},{h,g}],

[parallel8,
[dfs, bfs, le],
{a,b},{a,c},{a,d},{a,e},{a,f},{a,g},{a,h},
{b,a},{c,a},{d,a},{e,a},{f,a},{g,a},{h,a}],

[complex8,
[dfs, bfs, le],
{a,d},{a,e},
{b,c},{b,e},
{c,b},{c,d},{c,e},{c,g},{c,h},
{d,a},{d,c},{d,e},{d,g},
{e,a},{e,b},{e,c},{e,d},{e,g},{e,h},
{f,g},{f,h},
{g,c},{g,d},{g,e},{g,f},
{h,c},{h,e},{h,f}],

[ring8,
[dfs, bfs, le, mutex],
{b,a},{c,b},{d,c},{e,d},{f,e},{g,f},{h,g},{a,h}]

]).

Figure 5.1: List of the topologies included

5.2. Adding new Algorithms 33

For example, a new topology might look like the following:

-define(tops,
[· · ·

[RING8,
[dfs, bfs, le, mutex],
{b,a},{c,b},{d,c},{e,d},{f,e},{g,f},{h,g},{a,h}],

[
designator,

[alg1, alg2],
{ei,j},· · · ,{ek,l}

]
]).

Figure 5.2: Appending new topologies

5.2 Adding new Algorithms

To expand the simulator with new algorithms a little more effort is required. Basi-
cally the simulator requires three parts:

1. one module for the calculation of the spanning tree that is used by the server
application which should fulfill the naming convention matrix init ALG.erl,

2. one module for the client behavior that is used by the client application; this
module should be labeled client algorithm ALG.erl and

3. one module for the calculation of the stability criteria that is used by the
fault-injector. This file should be labeled fault injector ALG.erl.

Figure 4.5 allows an informative insight on the structure. To append a new algo-
rithm, the following steps have to be taken:

5.2.1 Spanning Tree Algorithms

Open the file matrix init.erl. The interesting part is shown below:

34 5. How to extend the Simulator

if
Alg == bfs ->

Client Data = matrix init bfs:client data(Data),
Server Data = matrix init bfs:server data(Client Data, []),
Number of Clients = length(Client Data);

Alg == dfs ->
Client Data = matrix init dfs:client data(Data),
Server Data = matrix init dfs:server data(Client Data, []),
Number of Clients = length(Client Data);

Alg == le ->
Client Data = matrix init le:client data(Data),
Server Data = matrix init le:server data(Client Data, []),
Number of Clients = length(Client Data);

Alg == mutex ->
Client Data = matrix init mutex:client data(Data),
Server Data = matrix init mutex:server data(Client Data, []),
Number of Clients = length(Client Data)

end,

Figure 5.3: Appending new algorithms

Analogously a section for the new algorithm has to be appended to this interface
class. Note that the algorithms identifiers are unique.

The next step is to create the file matrix init ALG.erl which generates the required
data out of the user input. The method gets a list containing all tuples as input
like [{b,a},{c,b}]. The output has to be a list of seven-tuples containing all required
information. The algorithms featured in this thesis all traverse the following steps:

• Create one entry for each processor and enter all the children in the appropriate
parents list.

• Enter each processors possibility for a fault, the so called node faults (NF).

• Enter each relations possibility for a fault, the so called edge faults (EF).

• Enter each elements legitimate set of states (LS) according to the spanning
tree algorithm.

INPUT:[{b, a}, · · ·]
Step0 {b,a} -> {a, , ,[{b, }], , , }
Step1 {a, , ,[{b, }], , , } -> {a,NF, ,[{b, }], , , }
Step2 {a,NF, ,[{b, }], , , } -> {a,NF, ,[{b,EF}], , , }
Step3 {a,NF, ,[{b,EF}], , , } -> {a,NF, ,[{b,EF}], ,LS, }
OUTPUT:[{a, NF, , [b, EF], , LS, }, · · ·]

This was the most difficult part of creating new algorithms. Yet, several values are
missing, indicated by the blanks in the above table.

5.2. Adding new Algorithms 35

The format of the seven-tuple data structure reads:

{
name of the node,
node fault,
internal process id (PID),
list of children and respective fault probability,
current (initial) state,
set of legitimate states,
number of steps executed (initially 0)
}

Since the data is generated before the clients connect, the client addresses will be
added automatically later. The current state will be generated in the final phase of
the initialization. The last missing value will be set to zero in a later process. The
variable steps allows the proof, that the scheduler is fair and the clients are granted
almost the same amount of steps.

5.2.2 Value Obtaining Client Algorithm

The procedure is almost the same.

1. Fill in an appropriate entry in the interface module labeled client algorithm.erl,
then

2. create a file labeled client algorithm ALG.erl.

The client usually gets a list generated by the fault-injector with nodes that he can
legally reach. If a node executes a step and experiences a node-fault, a fault-value is
automatically assigned withholding the node the possibility to acquire a value that
is part of the legitimate set of states.

Communication hazards also deliver a faulty-value. Yet, it is possible for certain
algorithms to acquire a correct value if redundancy is available allocated by multiple
nodes that can deliver a correct value.

Obviously the only task is to ask all neighbors that are on the list delivered by the
fault-injector and aggregate the results.

5.2.3 Observer Specific Functions

The fault-injector has many tasks:

1. It elects nodes to commit an execution step.

2. It generates lists for traversal incorporating both node- and edge-faults.

3. Also aggregation of new states to propagates current topologies and data to
be recorded is done by the fault-injector.

36 5. How to extend the Simulator

The implementation of an interface was disclaimed since the function consist just of
one line per algorithm. The corresponding function is labeled gen fault(Algorithm,
Data) -> and the line to be appended reads like:

if Algorithm == ALG ->
Fault = fault injector ALG:gen fault(Data)

The file fault injector ALG.erl has to be created accordingly. The function gets the
current data structure as input and delivers a falsified value that has an adequate
format according to the algorithm employed. It is checked automatically whether
the value equals a value from the legitimate set of states. If so, a new wrong value
is generated such that a fault is always guaranteed to be a fault.

For example, fault injector mutex.erl generates integer values while fault injector bfs.erl
generates lists containing a sequence of randomly chosen nodes. For this reason, ob-
server specific functions can be recycled if possible.

Since Erlang has dynamic type assertion it is even possible to generate different
types of faults within one algorithm.

5.3 Adding new Fault-Environments

The adding of new fault environments is still in experimental untested status. The
reasons for a dynamic fault-environment are discussed in section 4.2.2.

Fault environments are inserted into fault env.erl. Selected by the global variable
env set in the configuration file global conf.hrl the data structure can be manipulated
each step affected by the variables:

1. Algorithm,

2. Client Data,

3. Server Data and

4. Execution Semantics.

Even the algorithm can be changed dynamically. Projected on a meta plane, an
algorithm deployed in the fault environment might choose a self-stabilizing algorithm
based on the current input to follow different strategies in different sections of the
execution.

The client-data is the common data-structure to be manipulated. External influences
can be applied in a post-processing manner to modify not only the current config-
uration but also the whole topology or priority of nodes for the scheduler-election
procedure.

For the parameters to be recorded an adaption of the changes applied to the former
data structure is reasonable, although parameters recorded can also be generated or
omitted due to individual requirements.

Finally, the maximal number of nodes that may execute at most concurrently per
step can be changed dynamically, too. Although it is neither advised to use execu-
tion semantics higher than 1 nor dynamic execution semantics are reasonable, the
parameter is intended for the aggregation of new data structures.

5.4. Tweaks 37

The feature of dynamic behavior of environmental influence relying on the current
state is reasonable for the simulation of future scenarios. Although this feature was
not used for this thesis it was implemented for the sake of expandability.

5.4 Tweaks

In this chapter several tweaks are introduced to further customize the simulator.

Emergency Brake

If the simulator is running and it has to be stopped for a reason, one way to exit the
simulation is by pressing Ctrl + c which throws the simulator back to the console.
A more gentle way is to use the k-function from any Erlang-shell. Just by entering

k:k().

a kill token is sent to the server which initiates an immediate shutdown sequence.

For example, if unintended values have been entered in the initialization phase, the
kill-command can be used to initiate the shutdown sequence which will only exit the
current simulation while the processes remain in the Erlang environment and are
not thrown back to the systems console.

Negative Steps

The number of steps an algorithm has waited for execution, which is in medial equal
to the number of nodes available, can be set to a negative value. Although this
feature is not used, it might be reasonable to assign waiting-times a process is not
ready for execution. This functionality is already implemented, tested and ready for
use.

Starting in Medias Res

Batch processing is reasonable to execute a series of case studies without supervision
so it is reasonable to provide routines that allow the simulator to omit initialization
and start with data provided. The corresponding methods are:

• server:start(Phase, Algorithm, Client Data, Server Data, GFP).

• client:start(Name). and

• fault injector:start(phase 1).

Although these functions were not required and not used for the evaluation of results
they are helpful to acquire the results of several scenarios in little time.

38 5. How to extend the Simulator

Bibliography

[AB] Ericsson AB. Getting Started With Erlang. Ericsson. http://www.
erlang.org/doc/doc-5.5.3/doc/getting started/part frame.html, last
visited: 2006-09-25.

[Arm03] J. Armstrong. Making reliable distributed systems in the presence of
software errors, 2003.

[Arm07] J. Armstrong. Programming Erlang. 2007.

[AVWW96] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams.
Concurrent Programming in Erlang. Prentice-Hall, second edition,
1996.

[Dol00] Shlomi Dolev. Self-Stabilization. MIT Press, March 2000.

[Frä] Martin Fränzle. Folienskript Eingebettetet Systeme 1, Teil 1h. Univer-
sität Oldenburg.

[Hof] Petra Hofstedt. Nebenläufige Programmierung in Erlang. TU Berlin.
uebb.cs.tu-berlin.de/projekt01/slides.I.ps, last visited: 2006-09-25.

[Mar] Andrey Markov. Markov chain. Izvestiya Fiziko-matematicheskogo
obschestva pri Kazanskom universitete. http://en.wikipedia.org/wiki/
Markov chain, last visited: 2006-09-25.

[Mar06] Peter Marwedel. Embedded System Design. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[MP] Nick McKeown and Balaji Prabhakar. Discrete-Time Markov Chains,
Handout. Stanford University. http://www.stanford.edu/class/ee384x/
Handouts/rev3 v4.pdf, last visited: 2006-09-25.

[RA03] Mickaël Rémond and Joe Armstrong. Erlang programmation. Eyrolles,
May 2003.

[Tri82] Kishar Shridharbhai Trivedi. Probability and Statistics with Reliability,
Queuing and Computer Science Applications. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1982.

[VS] Ute Vogel and Michael Sonnenschein. Folienskript Modellbildung und
Simulation ökologischer Systeme. Universität Oldenburg. available in
the StudIP e-learning platform: https://elearning.uni-oldenburg.de/.

http://www.erlang.org/doc/doc-5.5.3/doc/getting_started/part_frame.html
http://www.erlang.org/doc/doc-5.5.3/doc/getting_started/part_frame.html
uebb.cs.tu-berlin.de/projekt01/slides.I.ps
http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Markov_chain
http://www.stanford.edu/class/ee384x/Handouts/rev3_v4.pdf
http://www.stanford.edu/class/ee384x/Handouts/rev3_v4.pdf
https://elearning.uni-oldenburg.de/

40 Bibliography

[Wik] Wikimedia Foundation. Markov chain. http://en.wikipedia.org/wiki/
Markov chain, last visited: 2006-09-25.

http://en.wikipedia.org/wiki/Markov_chain
http://en.wikipedia.org/wiki/Markov_chain

List of Figures

4.1 DFS SERIAL8 GFP = 0.2 . 13

4.2 Static Fault Environment . 15

4.3 Dynamic Fault Environment . 15

4.4 Compiler Warnings . 19

4.5 SiSSDA Class Diagram . 20

4.6 Server Application Step1 . 21

4.7 Initialization Step1 . 22

4.8 Initialization Step2 . 22

4.9 Server Application Step2 . 22

4.10 Initialization Step2.5a . 23

4.11 Initialization Step2.5b . 23

4.12 Server Application Step 3 . 24

4.13 Initialization Step3 . 24

4.14 Initialization Step4 . 24

4.15 Client Application Step1 . 25

4.16 Server Application Step4 . 25

4.17 Fault Injector Step1 . 26

4.18 Server Application Step4 . 26

4.19 Execution step0 . 26

4.20 Execution step1 . 27

4.21 Execution step2 . 27

4.22 Execution step3 . 27

4.23 Execution step4 . 27

4.24 Execution step5 . 28

4.25 Execution step6 . 28

42 List of Figures

5.1 List of the topologies included . 32

5.2 Appending new topologies . 33

5.3 Appending new algorithms . 34

	Contents
	1 Foreword
	2 Setup
	2.1 Windows
	2.2 Linux
	2.3 Development Environment

	3 Getting Started Quickly
	4 Getting Started Slowly
	4.1 Using Erlang
	4.1.1 Standard Literature
	4.1.2 Required Commands

	4.2 Configuration
	4.2.1 Accuracy
	4.2.2 Fault Environment
	4.2.3 Execution Semantics
	4.2.4 Fault Injector
	4.2.5 Fault Probability Correction
	4.2.6 Arbitrary Initial Values
	4.2.7 Logging of Events
	4.2.8 Scheduler Behavior
	4.2.9 Server
	4.2.10 Version
	4.2.11 Verbose
	4.2.12 Topologies

	4.3 Execution Flow
	4.3.1 Initialization
	4.3.2 Execution
	4.3.3 Post Processing

	5 How to extend the Simulator
	5.1 Adding new Topologies
	5.2 Adding new Algorithms
	5.2.1 Spanning Tree Algorithms
	5.2.2 Value Obtaining Client Algorithm
	5.2.3 Observer Specific Functions

	5.3 Adding new Fault-Environments
	5.4 Tweaks

	Bibliography

