Using Erlang for Distributed Simulation for the
Derivation of Fault Tolerance Measures

Nils Mullner

September 15, 2008

CARL
VON
OSSIETZKY

universitit|OLDENBURG

28

Outline

>
>
>
>
[

Motivation
Theory
Erlang
Simulation

Conclusion

)

28

Motivation

Motivation

» Why Fault Tolerance?

Motivation

Motivation

» Why Fault Tolerance?
» Why Simulation?

Motivation

Motivation

» Why Fault Tolerance?
» Why Simulation?
» Why Erlang?

Motivation

Fault Tolerance Measures

> Reliability, Availability, Safety, Trustworthiness

MIBE

Eaul

repairing
It

MTTR

A

Luluple errors are possible in this period

28

Motivation

Fault Tolerance Measures

> Reliability, Availability, Safety, Trustworthiness

MIBE

Eaul

repairing
It

MTTR

A

» Essential for Critical Systems

Luluple errors are possible in this period

Motivation

Fault Tolerance Measures

> Reliability, Availability, Safety, Trustworthiness

MIBE

Eaul

repairing
It

MTTR

A

» Essential for Critical Systems

Luluple errors are possible in this period

» Masking, Nonmasking and Failsafe

Motivation

Fault Tolerance Measures

> Reliability, Availability, Safety, Trustworthiness

MIBE

Eaul

repairing
It

MTTR

A

» Essential for Critical Systems

Luluple errors are possible in this period

» Masking, Nonmasking and Failsafe
» Masking: Safety and Liveness

» Nonmasking: Liveness
» Failsafe: Safety

Motivation

Simulation

» Easy and fast to implement

Motivation

Simulation

» Easy and fast to implement

» More accurate than analysis

Motivation

Simulation

» Easy and fast to implement
» More accurate than analysis

» Extremely scalable

Motivation

Simulation

» Easy and fast to implement
» More accurate than analysis
» Extremely scalable

» Suitable for a large class of problems

Motivation

Simulation

Easy and fast to implement
More accurate than analysis

Extremely scalable

vV v v Y

Suitable for a large class of problems

v

BUT: Requires (many) resources

Motivation

Erlang

» Distributed

6/28

Motivation

Erlang

» Distributed

» Concurrent

6/28

Motivation

Erlang

» Distributed
» Concurrent

» Functional

6/28

Motivation

Erlang

» Distributed
» Concurrent
» Functional

» A-calculus [Barendregt and Barendsen, 2000]

6/28

Motivation

Erlang

Distributed
Concurrent
Functional
A-calculus [Barendregt and Barendsen, 2000]

vV v v v Y

pure (no side-effects, lazy evaluation) and eager

6/28

Motivation

Functional Languages

» Lisp, Haskell, Scheme, Erlang

Motivation

Functional Languages

» Lisp, Haskell, Scheme, Erlang

» Often combined with other paradigms (logical, imperative,
object-oriented, constraint, distributed, and concurrent

programming)

28

Motivation

Functional Languages

» Lisp, Haskell, Scheme, Erlang

» Often combined with other paradigms (logical, imperative,
object-oriented, constraint, distributed, and concurrent
programming)

» Functions are algorihms

Motivation

Functional Languages

» Lisp, Haskell, Scheme, Erlang

» Often combined with other paradigms (logical, imperative,
object-oriented, constraint, distributed, and concurrent
programming)

» Functions are algorihms

» Algorithms can be splitted into subalgorithms

Motivation

Functional Languages

» Lisp, Haskell, Scheme, Erlang

» Often combined with other paradigms (logical, imperative,
object-oriented, constraint, distributed, and concurrent
programming)

» Functions are algorihms
» Algorithms can be splitted into subalgorithms
» Parallelization by modularizing programs

Motivation

Functional Languages

» Lisp, Haskell, Scheme, Erlang

v

vV v.v.Y

Often combined with other paradigms (logical, imperative,
object-oriented, constraint, distributed, and concurrent
programming)

Functions are algorihms
Algorithms can be splitted into subalgorithms
Parallelization by modularizing programs

Easy to verify

Motivation

So, what do we want?

» Simulation with

Motivation

So, what do we want?

» Simulation with

» a Functional Language to

Motivation

So, what do we want?

> Simulation with
» a Functional Language to

» derive Fault Tolerance Measures

Theory

Getting Results with Analytic Methods: Theory

» Model Distributed System as Markov Chain

Theory

Getting Results with Analytic Methods: Theory

» Model Distributed System as Markov Chain

» Suffers from state space explosion

Theory

Getting Results with Analytic Methods: Theory

» Model Distributed System as Markov Chain

» Suffers from state space explosion
» Solution: Partition state space

Theory

Getting Results with Analytic Methods: Theory

» Model Distributed System as Markov Chain

» Suffers from state space explosion

» Solution: Partition state space

» Problem: Abstraction hinders accuracy of results derived
tremendously

Theory

Theory

» Only conservative estimations

10/28

Theory

Theory

» Only conservative estimations
» Not even close to reality... (cf. [Dhama et al., 2006])

10/28

Theory

Theory

» Only conservative estimations
» Not even close to reality... (cf. [Dhama et al., 2006])

» Size of applicable topologies very limited

10/28

Theory

Theory

» Only conservative estimations
» Not even close to reality... (cf. [Dhama et al., 2006])
» Size of applicable topologies very limited

» Advantage: results are proven...

10/28

Erlang

Erlang 1/5

» Development started in 1986 as Prolog Interpreter at Ericsson
CSLab

11/28

Erlang

Erlang 1/5

» Development started in 1986 as Prolog Interpreter at Ericsson

CSLab
» A language for programming distributed fault-tolerant soft

real-time non-stop applications.

11/28

Erlang

Erlang 1/5

» Development started in 1986 as Prolog Interpreter at Ericsson
CSLab

» A language for programming distributed fault-tolerant soft
real-time non-stop applications.

» Purely Functional Language

11/28

Erlang

Erlang 1/5

» Development started in 1986 as Prolog Interpreter at Ericsson
CSLab

» A language for programming distributed fault-tolerant soft
real-time non-stop applications.

» Purely Functional Language

» Interpreted or compiled

11/28

Erlang

Erlang 1/5

v

Development started in 1986 as Prolog Interpreter at Ericsson
CSLab

A language for programming distributed fault-tolerant soft
real-time non-stop applications.

Purely Functional Language

Interpreted or compiled

Hot Code Plugging

v

vyvyy

11/28

Erlang

Erlang 2/5

» Focuses on parallelism and fault tolerance

12/28

Erlang

Erlang 2/5

» Focuses on parallelism and fault tolerance

» Highly reliable (Switch AXD301 is 99.9999999% reliable,
31 ms/yr downtime)

12/28

Erlang

Erlang 2/5

» Focuses on parallelism and fault tolerance

» Highly reliable (Switch AXD301 is 99.9999999% reliable,
31 ms/yr downtime)

» employs OpenSSL (?-test)

12/28

Erlang

Erlang 2/5

» Focuses on parallelism and fault tolerance

» Highly reliable (Switch AXD301 is 99.9999999% reliable,
31 ms/yr downtime)

» employs OpenSSL (?-test)

» No variables => instantiated constants

12/28

Erlang

Erlang 2/5

v

Focuses on parallelism and fault tolerance

Highly reliable (Switch AXD301 is 99.9999999% reliable,
31 ms/yr downtime)

v

v

employs OpenSSL (?-test)

No variables => instantiated constants

v

v

No loops => recursive function calls

12/28

Erlang

Erlang 2/5

» Focuses on parallelism and fault tolerance
» Highly reliable (Switch AXD301 is 99.9999999% reliable,

vV v v Vv

31 ms/yr downtime)

employs OpenSSL (?-test)

No variables => instantiated constants
No loops => recursive function calls

No variable declarations => duck types

12/28

Erlang

Erlang 2/5

» Focuses on parallelism and fault tolerance
» Highly reliable (Switch AXD301 is 99.9999999% reliable,

vV v.v v VY

31 ms/yr downtime)

employs OpenSSL (?-test)

No variables => instantiated constants
No loops => recursive function calls
No variable declarations => duck types

Prolog Style Syntax, but not a logic language!

12/28

Erlang

—module(math).
—export([fac/1]).

fac(N) when N > 0 —> N * fac(N—1);
fac(0) —> 1.

13 /28

Erlang

—module(pingpong).
—export([start/0, ping/2, pong/0]).

ping(0, Pong_PID) —>
Pong_PID ! finished,
io:format (" ping finished “n”, []);

ping(N, Pong_PID) —>
Pong_PID ! {ping, self()},
receive
pong —>
io:format(" Ping received pong™n", [])
end,
ping(N — 1, Pong_PID).

14 /28

Erlang

pong() —>
receive
finished —>
io:format (" Pong finished™n”, []);
{ping, Ping_PID} —>
io:format (" Pong received ping™n", []),
Ping_PID ! pong,
pong()
end.
start() —>

Pong_PID = spawn(pingpong, pong, []),
spawn(pingpong, ping, [3, Pong_PID]).

28

Simulation

Simulation Framework 1/5

» monitoring facility (prints every nt’ step)

16 /28

Simulation

Simulation Framework 1/5

» monitoring facility (prints every nt’ step)

» runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

16 /28

Simulation

Simulation Framework 1/5

» monitoring facility (prints every nt’ step)

» runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

» four distributed self-stabilizing algorithms provided

16 /28

Simulation

Simulation Framework 1/5

» monitoring facility (prints every nt’ step)
» runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)
» four distributed self-stabilizing algorithms provided
» Breadth First Search

16 /28

Simulation

Simulation Framework 1/5

» monitoring facility (prints every nt’ step)

» runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

» four distributed self-stabilizing algorithms provided

» Breadth First Search
» Depth First Search

16 /28

Simulation

Simulation Framework 1/5

» monitoring facility (prints every nt’ step)

» runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

» four distributed self-stabilizing algorithms provided

» Breadth First Search
» Depth First Search
» Leader Election

16 /28

Simulation

Simulation Framework 1/5

» monitoring facility (prints every nt’ step)

» runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

» four distributed self-stabilizing algorithms provided

» Breadth First Search
» Depth First Search
» Leader Election

» Mutual Exclusion

16 /28

Simulation

Simulation Framework 1/5

» monitoring facility (prints every nt’ step)

» runs until desired accuracy is reached (maximal acceptable
deviation within last n turns)

» four distributed self-stabilizing algorithms provided

» Breadth First Search
» Depth First Search
» Leader Election

» Mutual Exclusion

> easy to extend

16 /28

Simulation

Simulation Framework 2/5

» exact fault environments (specify distinct values for each
vertex and edge)

17/28

Simulation

Simulation Framework 2/5

» exact fault environments (specify distinct values for each
vertex and edge)

» dynamic fault environments

17/28

Simulation

Simulation Framework 2/5

» exact fault environments (specify distinct values for each
vertex and edge)

» dynamic fault environments

» dynamic execution semantics possible (number of nodes
executing per step in parallel)

17/28

Simulation

Simulation Framework 2/5

» exact fault environments (specify distinct values for each
vertex and edge)

» dynamic fault environments

» dynamic execution semantics possible (number of nodes
executing per step in parallel)

» external fault injection and monitoring facilities

17/28

Simulation

Simulation Framework 2/5

» exact fault environments (specify distinct values for each
vertex and edge)

» dynamic fault environments

» dynamic execution semantics possible (number of nodes
executing per step in parallel)

» external fault injection and monitoring facilities

> event logging (if needed)

17/28

Simulation

Simulation Framework 2/5

» exact fault environments (specify distinct values for each
vertex and edge)

» dynamic fault environments

» dynamic execution semantics possible (number of nodes
executing per step in parallel)

» external fault injection and monitoring facilities
> event logging (if needed)

» choice of schedulers (three provided)

17 /28

Simulation

Simulation Framework 2/5

exact fault environments (specify distinct values for each
vertex and edge)

» dynamic fault environments

v

vV v v Y

dynamic execution semantics possible (number of nodes
executing per step in parallel)

external fault injection and monitoring facilities
event logging (if needed)
choice of schedulers (three provided)

Load balancing (each client a lightweight process, can be
mapped to any processor/computer)

17 /28

Simulation

Simulation Framework 3/5

7> server:start().

[EEy] [1]bfs

[EEy e [2]dfs

[EEy] [3]1le

(L xS [4]mutex

%%%%% Please enter the appropriate number [n.]1>[

B
oo Sisspa B
o B
TR I B
oo B
oo B
oo Welcome to the Simulator for B
LEEy] Self-Stabilizing Distributed Algorithms feased
oo B
oo SERVER B
B
amtns INITIALIZATION-PHASE 1: CHOOSE ALGORITHH ey
true
%%%%% The following algorithms are available: BRBBY

18 /28

Simulation

Simulation Framework 4/5

-<—)> client_al gorithm

-

fl

faultdnectoristertO _

AN A

client_al gorithmbfs

client_al gorithmdfs

client_al gorithmle

client_al gori t hm mut ex

matrix_init_bfs

matrix_init_dfs

matrix_init_le

matri x_i ni t_mit ex

faul t_injector_bfs

faul t_inj ector_dfs

faul t__injector_le

faul t i nj ect or _nut ex

Results

Accuracy 1/2

0.60

s NN e
/
f

o
s
S

Availability
o
8

o
i
S

0.10

0.00

0 10,000 20,000
of steps

This figure exemplifies availability for first 20,000 steps of an
eight-processor system. The desired accuracy is reached if
maximum the deviation within last n steps is lower than a certain
threshold. The Results presented in the following feature about
1,000, 000 steps per system node.

20/28

Results

Accuracy 2/2

100

90 \

80 \

70 \

60 — Insufficiently Strict
\ Accuracy Guards

50 — Sufficiently Strict Ac-

\ curacy Guards
40

30 \

20

10

Availability

" —
0

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17
Error-Probability for each receiving node and each edge

Strictness of accuracy guards is crucial for reliability of results!

21/28

Test Case: All Possible 4-node Graphs

~ ~
MR Bt Raary Bty
1 ¢—p H 1 —p H
‘e L Moo 11

O 1>]

H 1 ¢—P' H —p H
‘.¢ ‘.¢ L4 ‘.¢
;

A/av
~
4—>

. /""\,.\ e & /
SECSRELIE

,./z ... /5 \, ST /'10\
S L e
We chose depth first search (DFS) and breadth first search (BFS)

algorithms for comparison with the analytic approach, executed on
all possible 4-node graphs.

22/28

Results

Breadth First Search - Simulation

- 100
i)
= 90
- \ Topology 1
_'__5 80 — Topology 2
© —Topology 3
3: 70 \ —Topology 4
o 60 — Topology 5
c Topology 6
= 50 —Topology 7
—Topology 8
-§ 40 —Topology 9
30 — Topology 10
— Topology 11
20
10

0 : : : :
0.00 005 010 0.15 020 025 030 035 0.40
Global Node Error Probabilty

23 /28

Results

Breadth First Search - Analysis

100
>
i
= 90
Q \ Topology 1
_(—E 80 \ —Topology 2
f>U 70 —Topology 3
< \ —Topology 4
o 60 —Topology 5
< \ Topology 6
= 50 \ —Topology 7
e 40 —Topology 8
4 —Topology 9
30 —Topology 10
—Topology 11
20
10+

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ |
0.00 005 010 015 020 025 030 035 0.40
Global Node Error Probability

24 /28

Results

Depth First Search - Simulation

> 100
=
3 90
© 80 Topology 1
T—u —Topology 2
> 70 —Topology 3
< —Topology 4
o 60 —Topology 5
£ Topology 6
= 50 —Topology 7
g 40 —Topology 8
- —Topology 9
30 —Topology 10
—Topology 11
20
10
0

0.00 0.05 010 015 020 025 0.30 0.35 0.40
Global Node Error Probability

N
a
N
®

Results

Depth First Search - Analysis

2100
a 9
_r_E 80 \\ Topology 1
© \\ —Topology 2
3: 70 —Topology 3
—Topology 4
? 601 —Topology 5
— 1 Topology 6
2 50 —Topology 7
g 40 —Topology 8
- —Topology 9
30 —Topology 10
20 —Topology 11
10 M

0 T T T T T T T |
0.00 0.05 0.0 0.15 020 025 030 035 040
Global Node Error Probability

26 /28

Conclusion

Conclusions

Derivation of fault tolerance measures by simulation

> reason: analytic method is insufficient

27 /28

Conclusion

Conclusions

Derivation of fault tolerance measures by simulation
> reason: analytic method is insufficient

» method: simulation of self-stabilizing distributed algorithms

27 /28

Conclusion

Conclusions

Derivation of fault tolerance measures by simulation
> reason: analytic method is insufficient
» method: simulation of self-stabilizing distributed algorithms

» features: modular design, scalability, performance, reliability
of results

27 /28

@ Barendregt, H. and Barendsen, E. (2000).

Introduction to lambda calculus.

In Aspenids Workshop on Implementation of Functional Languages, Goteborg. Programming Methodology
Group, University of Goteborg and Chalmers University of Technology.

Dhama, A., Theel, O., and Warns, T. (2006).

Reliability and Availability Analysis of Self-Stabilizing Systems.

In 8th International Symposium on Stabilization, Safety, and Security of Distributed Systems, page 17
Springer.

Dolev, S. (2000).

Self-Stabilization.

MIT Press

Miillner, N., Dhama, A., and Theel, O. (2008).

Derivation of Fault Tolerance Measures of Self-Stabilizing Algorithms by Simulation.
In ANSS '08: Proceedings of the 41st annual symposium on Simulation, Ottawa, Ontario, Canada. |IEEE
Computer Society Press

Schneider, M. (1993).
Self-stabilization.

ACM Comput. Surv., 25(1):45-67
Trivedi, K. S. (1982).

Probability and Statistics with Reliability, Queuing and Computer Science Applications.
Prentice Hall PTR, Upper Saddle River, NJ, USA

28 /28

	Motivation
	Theory
	Erlang
	Simulation
	Results
	Conclusion
	

