
Composing Thermostatically Controlled Loads
to Determine the Reliability against Blackouts

Nils Müllner, Oliver Theel and Martin Fränzle
Carl von Ossietzky University of Oldenburg, Germany, and

OFFIS Institute for Computer Science
Email: nils.muellner|theel|fraenzle@informatik.uni-oldenburg.de

Abstract—Power grids are parallel systems in which con-
sumers demand a shared resource independent of each other.
A blackout occurs when the total demand increases or decreases
too rapidly. This paper combines methods and concepts from
three domains. The first one stems from estimating the power
consumption based on thermostatically controlled loads via
Markov chains. The second domain provides the composition of
parallel systems enriched by intermediate lumping to construct a
minimal aggregate transition model, in this case of a community
of housings. The third domain provides reasoning about fault
tolerance properties by introducing limiting window reliability as
measure, suitable to account for the continuous risk of blackouts.
Combined, the three methods and concepts allow to determine
the risk of blackout of a community over time.

I. INTRODUCTION

This paper demonstrates the practical application of com-
bining parallel composition and intermediate lumping on ther-
mostatically controlled loads (TCL). The first contribution is
a method to determine the risk of blackout. The second con-
tribution is to point out the potential of independent processes
— in the context that processes do not influence each other
— in contrast to mutually depending processes.

A. Related work

The TCL scenario is based on a temperature model intro-
duced by Malhamè and Chong in 1985 [1]. Callaway applied
their model in 2009 [2] to derive a discrete-time Markov chain
(DTMC) to determine the temperature progress, extended by
Koch et al. in 2011 [3]. Kamgarpour et al. contribute three
suitable models to determine the risk of blackout in this
context [4]. This paper contributes a compositional reasoning
to this domain.

Markov chains, as introduced by Kemeny and Snell in
1969 [5],1 can be lumped to reduce the state space. Lumping
is a well-known technique of coalescing of states under an
equivalence relation, based on the definition of probabilistic
bisimulation by Larsen and Skou from 1989 [6], presented by
Buchholz in 1994 [7]. Lumping has the potential to speed up
model checking as discussed by Katoen et al. in 2007 [8].
Lumping transition models of independent processes was pro-
posed by Hermanns and Katoen in 1999 [9] exemplarily for a
plain old telephone system. Lumping is further implemented
in popular tools like the Caesar/Aldebaraan Development
Package (CADP) [10] to carry out formal verification and
performance analysis with the non-stochastic process algebra

1We refer to revised version of 1976.

LOTOS [11]. Lumping of independent processes is further
addressed by Boudali et al. [12]. This paper contributes a novel
application to this domain.

Determining fault tolerance measures of distributed sys-
tems has been introduced by Arora, Kulkarni et al. [13]
in a deterministic context. Publications preceeding this paper
focused on system decomposition [14] to allow for local
lumping on the likely considerably smaller transition models
of subsystems (i.e. sub-Markov chains). This paper compar-
atively points out the difference between systems comprising
dependent and systems comprising independent processes.

B. Structure

The paper is organized as follows. Section II presents
the system model and its conversion to a transition model.
Section III explains how the aggregate transition model is con-
structed and applied to determine the risk of blackouts. Section
IV provides a brief example to demonstrate the practical value
of the approach. Section V concludes our work.

II. MODEL

The goal of this case study is to determine the risk of volt-
age peaks in a power grid that cause shutdowns. Such peaks
occur when the accumulated load demanded by consumers
changes too fast, i.e., when too many consumers simultane-
ously either increase or decrease their energy demand. This
example considers the load to be caused by cooling systems
controlled via thermostats.

A. The TCL model

Consider a set of homogeneous houses in a warm region.
While the ambient temperature θa outside is constantly 32 ◦C,
the desired set indoor temperature θs is 20 ◦C. A thermostat
controls the cooling system in the house. It turns on when the
temperature reaches the upper bound of the hysteresis δ =
0.5 ◦C, which is 20.5 ◦C, and it turns off when reaching the
lower boundary which is 19.5 ◦C.

B. The deadband

Similar to defining safety to demarcate legal from illegal
states when determining fault tolerance properties [14], tem-
perature bands can be used to specify comfort zones in which
the thermostat should operate. Consider that the thermostat has
a latency of one time step and measures the temperature at
discrete evenly distributed time points utilizing a bang-bang



control [15]. A bang-bang control is a simple on/off switch
turning the cooling system on when it is too hot or turning it off
when it is too cold. It is reasonable to specify the comfort zones
according to how far the actual temperature deviates from θs.
The system is in a legal state within interval [19.5, 20.5], a
switching should occur within a reasonable interval, that is,
not too long after the deadband is left, and in an undesired state
beyond that interval, when switching did not occur timely as
depicted in Figure 1.
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Figure 1. Specifying legal and undesired states and a witching region

This shows how the classification into fault, error and
failure by Aviz̆ienis et al. [16] from the context of fault
tolerance can be mapped onto temperature intervals.

C. Temperature dynamics

The following equation describes the temperature progress:

θ(t+ 1) = aθ(t)︸ ︷︷ ︸
i)

+(1− a)(θa −m(t)R · P )︸ ︷︷ ︸
ii)

+ g(t)︸︷︷︸
iii)

[2, p.8] (1)

The equation2 reads as follows: the temperature in the next
time step is i) the temperature of the current time step plus ii)
the temperature progress depending on whether the thermostat
is turned on or off plus iii) some noise. Parameter a "governs
the thermal characteristics of the thermal mass and is defined
as a = exp(−h/CR)" [2] with h being the duration of a time
step measured in seconds, C being the thermal capacitance
measured in kWh/ ◦C and R being the thermal resistance
measured in ◦C/kW . The switch m is defined in [2, p.9] as
follows:

mi(tn+1) =


0, θ(t) < θs − δ = θ−
1, θ(t) > θs + δ = θ+
m(t) otherwise

(2)

Parameter P describes the energy transfer rate to or from the
thermal mass measured in kW . The term g(t) is a noise term.
Table I shows the standard parameters used by Callaway [2]:
Parameter η is required to describe the total power demand

Parameter Meaning Standard value Unit
R average thermal resistance 2 ◦C/kW
C average thermal capacitance 10 kWh/ ◦C
P average energy transfer rate 14 kw
η load efficiency 2.5
θs temperature set point 20 ◦C
δ thermostat hysteresis 0.5 ◦C
θa ambient temperature 32 ◦C

Table I. MODEL PARAMETERS

2The equation has been adapted from [2, p.8] in the context of this paper.
For instance, the original version uses w instead of g as noise term. To avoid
ambiguity with the window size, Equation 1 shows gi(tn) as noise term.

y in the nect time step: y(t + 1) =
N∑
i=1

1
ηP · m(t + 1). The

parameter η describes the efficiency "and can be interpreted
as the coefficient of performance" [2].

D. Deterministic execution

To determine the influence of each single parameter, the
system execution is evaluated at first without noise, that is,
without part iii) of Equation 1. Then, the system is deter-
ministic without probabilistic influence. The corresponding
implementation in iSat [17] is provided online.3 We first

Figure 2. The TCL model executing with standard parameters

describe the initial behavior and then the behavior in the limit.
The upper graph in Figure 2 shows the status of the switch
and the lower graph shows the temperature evolving over time.
Initially, the system detects that the temperature is too high and
initiates cooling one time step later. At time step 8, it enters
the deadband for the first time — at time step 7 it is just above
the hysteresis — and continues cooling until time step 9. The
system requires ten time steps to reach the lower boundary of
the hysteresis for the first time, the switch is turned off for
(alternatingly) three or four steps, the switch is turned on for
(alternatingly) two or three steps, and the repetitive switching
cycle shown in Figure 3 occurs the first time at time instant 44
and persists at least until time step 100. It even holds until time
step 1000, not depicted in the graph, so that the assumption that
the cyclic behavior is stable is justified. Each vertex is labeled

4off

1
,,
3off

1
**
2off

1
**
1off

1

��
1on

1

��

2on

1

jj 3on

1

jj 4on

1

jj

5off

1
**
4off

1
**
3off

1
**
2off

1

��
1on

1

LL

2on

1

ll 3on

1

jj 1off

1

jj

Figure 3. Repetitive cycle of a swicth remaining in a certain state

number status, referring to the number of steps the system will
remain in the state. The deterministic setting without noise
allows to understand how the single parameters influence the

3www.informatik.uni-oldenburg.de/~phoenix/isatcallaway.zip

www.informatik.uni-oldenburg.de/~phoenix/isatcallaway.zip


equation. Therefore, we repeat the same setting but change
each parameter, one at a time, amplifying it by a factor of
ten compared to the standard parameters from Table I, except
for the parameters altered in Figures 8 and 9, which are
amplified by adding 10 ◦C in Figure 8 and subtracting 10 ◦C
in Figure 9. When the isolation of the house via parameter

Figure 4. Temperature dynamics with standard parameters and altered average
thermal resistance R = 20 ◦C/kW

R is increased, it heats up at a far slower pace as shown in
Figure 4. Furthermore, the cooling process is more efficient.
The switching delay forces the system to even cool below
the safety threshold as the temperature reaches below 18 ◦C.
Figure 5 shows that amplifying the cooling power via P cools

Figure 5. Temperature dynamics with standard parameters and altered average
energy transfer rate P = 140kw

the house down rapidly. With the delay of one time step given,
the cooling device freezes the house even below 0 ◦C. In case

Figure 6. Temperature dynamics with standard parameters and altered average
thermal capacitance C = 100kWh/ ◦C

the thermal capacitance is increased — imagine for instance
the house filled with a liquid instead of air — via parameter C,
both cooling and heating phases are slowed down as shown in
Figure 6. If the deadband is relaxed via parameter δ as shown
in Figure 7, the cooling and heating phases take longer as
well. Since it would be unreasonable to amplify the ambient
temperature via θa beyond a certain point, 10 ◦C are added
instead of multiplying it by a factor of 10. As shown in
Figure 8, the heating phases are shortened and the cooling
phases are extended. The setting in depicted in Figure 9 lowers

Figure 7. Temperature dynamics with standard parameters and altered thermal
hysteresis δ = 5 ◦C

Figure 8. Temperature dynamics with standard parameters and altered
temperature set point θa = 42 ◦C

the set point θs to 10 ◦C which also shortens the heating phase
and flattens the graph. Amplifying the load efficiency via η has

Figure 9. Temperature dynamics with standard parameters and altered
ambient temperature θs = 10 ◦C

almost no effect and is therefore not depicted.

E. Adding noise

When the TCL model without noise is explored, then the
system executes along one deterministic execution trace. By
adding a general noise term, like the part iii) in Equation 1,
the transition model becomes Markovian. The execution traces
then spread over time as exemplarily shown in Figure 10 by
Koch et al. [3].

Figure 10. Temperature state evolution via simulation by Koch et al. [3,
p.3]

In this setup, 200 households execute in parallel. Noise
causes them to reach the deadband boundaries at different
times. While all households are initially in the same state, their
progress differs. After about three hours, all synchronicity is
lost. One time step equals ten seconds in this example.



F. Binning

Limiting window availability (LWA) is the probability that
a system provides a desired service (or satisfies a safety
specification) within an alotted time window, considering that
the stationary distribution initially holds [18]. The method to
compute a window property like LWA is based on system
and probabilistic influence to be translated into a DTMC. An
intermediate step to finally acquire a DTMC from the TCL
scenario is the discretization of the continuous temperature
domain. A discretization in this context is commonly known
as binning [2, 3]. The temperature domain is partitioned into
— in this case equally sized — bins.

The probabilistic execution traces reach a bin with a
certain probability in the next time step. The progress of each
household along the temperature domains — one domain for
m being off and one for m being on — can be formally be
described with a DTMC as pictured in Figure 11.
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Figure 11. The state bin transition model by Koch et al. [3, p.2]

The Figure shows how the temperature domain is binned
for both on and off states of m, and that the transition
probabilities can be computed for each state tuple. The TCL
example points out the limitations of deriving precise transition
probabilities analytically. Transition probabilities are often
derived via approximate methods like simulation or sampling.
In this case, binning is an abstraction introducing an error. The
coarser the bins are, the larger becomes the abstraction error.
Soudjani and Abate [19, 20, 21] currently work on methods
to compute the error that is introduced by the abstraction. No-
tably, they propose a method to directly compute the transition
probabilities in a product chain of multiple housings, contrary
to the sequential construction of the lumped product Markov
chain that is discussed in this section.

The analytic methods proposed in the previous chapters
rely on the quality of the provided probabilities. The discussion
of power grids addressed that determining this quality is im-
portant. Furthermore, it showed, that safety can be formulated
and a DTMC can be constructed to evaluate the safety over
time.

III. METHOD

A. Population lumping

The example contains homogeneous housings with uniform
parameters. This is not unrealistic, given the uniformity of
communities in suburban areas. Each housing is modeled as
a process. The goal is to construct one DTMC as surrogate
transition model for one housing in the community. By mul-
tiplying it with the Kronecker product, the probability of too
many houses within the population switching simultaneously

can be computed. Lumping can be applied between each two
Kronecker multiplications to minimize the product chain to a
counting abstraction.

The complexity of the aggregate DTMC of all households
depends on the number of households and the granularity of the
applied binning. This is similar to the size of the state space
being the product over all register domains in the previous
examples. The size of the full product chain here is nk with
n bins per household and k households. Notably, each bin
has to be accounted for twice: once for on and once for off
mode as shown in Figure 11. In order to arrive at a tractable
Markov chain, it is reasonable to select a binning according
to the number of households such that the full product chain
remains tractable.

Assume the following symbolic DTMC D1 for one housing
as given. The states are labeled number status. Probability pi
is the probability that the temperature in a house remains in
its current bin i for one time step and 1− pi is the probability
that it progresses to the next temperature bin. The matrix is
intentionally designed simple with only two bins and a sparse
matrix to demonstrate lumpability.

↓ from/to → 1 on 2 on 1 off 2 off
1 on p1 1− p1
2 on p2 1− p2
1 off p3 1− p3
2 off 1− p4 p4

Table II. EXAMPLE SYMBOLIC DTMC FOR A SURROGATE HOUSING D1

Consider the Markov chain to be irreducible and labeled
D1. With the houses being mutually independent and executing
Equation 1 in parallel, maximal parallel execution semantics
apply and the Kronecker product ⊗ can be used as discussed
in [22].

The product Markov chain of two houses with uniform
parameters is the Kronecker product of two Markov chains
D1. It calculates to D1 ⊗ D1 and is labeled D2 — the index
in Di refers to the number of households — shown in Table IV
on the next page. Empty quadrants are omitted according to the
scheme shown in Table III, in which the black cells represent
the omitted zero values.
↓ from/to → first quarter second quarter third quarter fourth quarter
first quarter
second quarter
third quarter
fourth quarter

Table III. OMISSION SCHEME FOR LUMPING THE DTMC IN TABLE IV

Lumping is conducted as described in [18] to reduce the
DTMC shown in Table IV to the DTMC shown in Table V.
The state lumping follows the schematics shown in Figure 12
which describes the equivalence classes. It also shows the
symmetry of the equivalence classes in the state space: The
states mirrored at the diagonal are pairwise bisimilar. States
〈1on, 2on〉 and 〈2on, 1on〉 become state 〈1on, 2on〉. The other
equivalence classes are labeled analogously. This process can
be repeated for k uniform households, that is, their respective
transition models, until D′k is composedly constructed.

B. Computing the complexity with enumerative combinatorics

Enumerative combinatorics provide the means to compute
the number of states the lumped aggregate DTMC com-



↓first quarter row first quarter column
↓ from/to → 〈1on, 1on〉 〈1on, 2on〉 〈1on, 1off〉 〈1on, 2off〉
〈1on, 1on〉 p21 p1 · (1− p1)
〈1on, 2on〉 p1 · p2 p1 · (1− p2)
〈1on, 1off〉 p1 · p3 p1 · (1− p3)
〈1on, 2off〉 p1 · (1− p4) p1 · p4

↓first quarter row second quarter column
↓ from/to → 〈2on, 1on〉 〈2on, 2on〉 〈2on, 1off〉 〈2on, 2off〉
〈1on, 1on〉 p1 · (1− p1) (1− p1)2

〈1on, 2on〉 (1− p1) · p2 (1− p1) · (1− p2)
〈1on, 1off〉 (1− p1) · p3 (1− p1) · (1− p3)
〈1on, 2off〉 (1− p1) · (1− p4) (1− p1) · p4
↓second quarter row second quarter column
↓ from/to → 〈2on, 1on〉 〈2on, 2on〉 〈2on, 1off〉 〈2on, 2off〉
〈2on, 1on〉 p2 · p1 p2 · (1− p1)

〈2on, 2on〉 p22 (1− p2) · p2
〈2on, 1off〉 p2 · p3 p2 · (1− p3)
〈2on, 2off〉 p2 · (1− p4) p2 · p4

↓second quarter row third quarter column
↓ from/to → 〈1off, 1on〉 〈1off, 2on〉 〈1off, 1off〉 〈1off, 2off〉
〈2on, 1on〉 (1− p2)·1 (1− p2) · (1− p1)

〈2on, 2on〉 p2 · (1− p2) (1− p2)2

〈2on, 1off〉 (1− p2) · p3 (1− p2) · (1− p3)
〈2on, 2off〉 (1− p2) · (1− p4) (1− p2) · p4

↓third quarter row third quarter column
↓ from/to → 〈1off, 1on〉 〈1off, 2on〉 〈1off, 1off〉 〈1off, 2off〉
〈1off, 1on〉 p3 · p1 p3 · (1− p1)
〈1off, 2on〉 p3 · p2 p3 · (1− p2)

〈1off, 1off〉 p23 p3 · (1− p3)
〈1off, 2off〉 p3 · (1− p4) p3 · p4

↓third quarter row fourth quarter column
↓ from/to → 〈2off, 1on〉 〈2off, 2on〉 〈2off, 1off〉 〈2off, 2off〉
〈1off, 1on〉 p3 · (1− p1) (1− p3) · (1− p1)
〈1off, 2on〉 (1− p3) · p2 (1− p3) · (1− p2)

〈1off, 1off〉 (1− p3) · p3 (1− p3)2

〈1off, 2off〉 (1− p3) · (1− p4) (1− p3) · p4
↓fourth quarter row fourth quarter column
↓ from/to → 〈1on, 1on〉 〈1on, 2on〉 〈1on, 1off〉 〈1on, 2off〉
〈2off, 1on〉 (1− p4) · p1 (1− p4) · (1− p1)
〈2off, 2on〉 (1− p4) · p2 (1− p4) · (1− p2)
〈2off, 1off〉 (1− p4) · p3 (1− p4) · (1− p3)

〈2off, 2off〉 (1− p4)2 (1− p4) · p4
↓fourth quarter row first quarter column
↓ from/to → 〈2off, 1on〉 〈2off, 2on〉 〈2off, 1off〉 〈2off, 2off〉
〈2off, 1on〉 p4 · p1 p4 · (1− p1)
〈2off, 2on〉 p4 · p2 p4 · (1− p2)
〈2off, 1off〉 p4 · p3 p4 · (1− p3)

〈2off, 2off〉 p4 · (1− p4) p24
Table IV. EXAMPLE TCL DTMC COMPOSITION D2 , 16 STATES, 64

TRANSITIONS

〈1on, 1on〉 〈1on, 2on〉
88

∼

xx

〈1on, 1off〉00

∼

��

〈1on, 2off〉22

∼

��

〈2on, 1on〉 〈2on, 2on〉 〈2on, 1off〉
88

∼

xx

〈2on, 2off〉
FF

∼

pp

〈1off, 1on〉 〈1off, 2on〉 〈1off, 1off〉 〈1off, 2off〉
88

∼

xx
〈2off, 1on〉 〈2off, 2on〉 〈2off, 1off〉 〈2off, 2off〉

Figure 12. Lumping scheme showing which states are bisimilar

↓ from/to → 〈1on, 1on〉 〈1on, 2on〉 〈1on, 1off〉 〈1on, 2off〉 〈2on, 2on〉 〈2on, 1off〉 〈2on, 2off〉
〈1on, 1on〉 p21 2 · p1 · (1− p1) (1− p1)2

〈1on, 2on〉 p1 · p2 p1 · (1− p2) (1− p1) · p2(1− p1) · (1− p2)
〈1on, 1off〉 p1 · p3 p1 · (1− p3) (1− p1) · p3 (1− p1) · (1− p3)
〈1on, 2off〉 p1 · (1− p4)(1− p1) · (1− p4) p1 · p4 (1− p1) · p4

↓ from/to → 〈1on, 2on〉 〈1on, 1off〉 〈1on, 2off〉 〈2on, 2on〉 〈2on, 1off〉 〈2on, 2off〉 〈1off, 1off〉 〈1off, 2off〉
〈2on, 2on〉 p22 2 · (1− p2) · p2 (1− p2)2

〈2on, 1off〉 p2 · p3 p− 2 · (1− p3) (1− p2) · (1− p3)(1− p2) · p3
〈2on, 2off〉 p1 · (1− p4)(1− p1) · (1− p4) p2 · p4 (1− p2) · p4

↓ from/to → 〈1on, 1on〉 〈1on, 1off〉 〈1on, 2off〉 〈1off, 1off〉 〈1off, 2off〉 〈2off, 2off〉
〈1off, 1off〉 p23 2 · (1− p3) · p3 (1− p3)2

〈1off, 2off〉 p3 · (1− p4)(1− p3) · (1− p4) p3 · p4 (1− p3) · p4
〈2off, 2off〉 (1− p4)2 2 · (1− p4) · p4 p24

Table V. LUMPED DTMC D′2 , TEN STATES, 36 TRANSITIONS

prises. The state space explosion without lumping draws a
state space according to variation with repetition. Therefore,
there are |S| = nk states when considering k houses and
n bins. The successive lumping arrives at a state space of
|S ′| =

((
n
k

))
=
(
n+k−1

k

)
= (n+k−1)!

(n−1)!·k! — the multiset (rising)
binomial coefficient [23] — by combination with repetition.
Figures 13(a) and 13(b) compare both state space explosions
when adding more uniform households on the x-axis. They
show that lumping dampens the explosion tremendously. The
largest DTMC before the final lumping step in compositional
lumping in this context is

((
n
k−1

))
·n. Figure 13(a) compares

the initial explosions up to ten households, while Figure 13(b)
computes the scalability for up to 100 households. The fig-
ures demonstrate that instead of the exponential state space
explosion depicted in the red graphs, the size of the DTMC
increases almost linearly with lumping, depicted in the blue
graphs. Compared to unlumped multiplication, the graph under
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Figure 13. Dampening the state space explosion

application of lumping almost coincides with the x-axis. Both
complexities are computed with enumerative combinatorics,
that is, variation and combination with repetition. The tractabil-
ity of the DTMC depends on the available computing power.
Even with lumping and perfectly homogeneous households,
S ′ contains 176, 851 states for 100 housings and the proposed
binning. Yet, compared to approximately 1.61 · 1060 states,
sequential composition and lumping are obviously preferable.

C. Control destroys bisimilarity

The sequential application of composition and lumping
hinges on the mutual independence of the processes. Con-
trol strategies can prioritize housings to distribute limited
resources, for instance when a limited amount of energy faces
more demand than it can satisfy. In that case, processes lose



their independence. The demand by one prioritized process can
delay the satisfaction of another process.

For instance, assume that in the above example of D2 in
Table IV, one house constantly has a higher priority than
another one. Further, assume that the power grid cannot
tolerate both thermostats switching simultaneously from on to
off or vice versa. In case both thermostats want to switch, the
thermostat with the lower priority must wait exactly one time
step. This adds two novel states to the system and replaces
transitions accordingly as shown in Table VI.

↓ from/to → 〈2on, 2on〉 〈1off, 2on〉 〈2on, 1off〉 〈1off, 3on〉
〈2on, 2on〉 p22 (1− p2) · p2p2 · (1− p2) (1− p2)2

↓ from/to → 〈2off, 2off〉 〈1on, 2off〉 〈2off, 1on〉 〈1on, 3off〉
〈2off, 2off〉 p24 (1− p4) · p4p4 · (1− p4) (1− p4)2

↓ from/to → 〈1off, 1off〉〈2off, 1off〉〈1on, 1on〉〈2on, 1on〉
〈1off, 3on〉 p3 1− p3
〈1on, 3off〉 p1 1− p1

Table VI. PRIORITIZED TCL DTMC

In case the transition probabilities are not equal — p1 6=
p2 ∧ p1 6= p3 ∧ p1 6= p4 ∧ p2 6= p3 ∧ p2 6= p4 ∧ p3 6= p4

— the DTMC becomes irreducible. For instance, the states
〈1on, 2on〉 and 〈2on, 1on〉 are then no longer probabilistic
bisimilar as their outgoing transition probabilities would not
coincide anymore. Although the processes do not propagate
values to one another, thus excluding fault propagation: they
depend on each other by sharing a mutual resource. When that
resource is controlled, bisimilarity can be destroyed.

This paragraph demonstrated how sequential composition
and lumping can be executed and pointed out, that the absence
of fault propagation does not necessarily imply independence
of the processes. The example introduced control to destroy
bisimulation among non-communicating processes. Next, a
small numerical example computes the probability for a small
community to suffer from a black out.

IV. EXAMPLE

A. Interleaving application of the Kronecker product ⊗ and
lumping

Consider a set of 1000 households. For the sake of ar-
gument, we assume the coarsest possible binning, yielding
one bin for on and one for off mode. Acquiring transition
probabilities is not the scope of this paper. We consider the
following values as being provided: the probability to remain
in the on bin is 0.9 and the probability to remain in the off
bin is 0.8.

The full product chain without lumping contains |S| =
21000 = 1, 0715 · 10301 states. When lumping is applied after
each composition — which is a counting abstraction [24,
p.195] —, the resulting DTMC contains only |S ′| = 1001
states: one state in which all thermostats are off, one in which
only one thermostat is on and so on until one state in which
all 1000 thermostats are on. Its computation took about 50
minutes on a Intel(R) Core(TM) i5-3317U CPU at 1.7 GHz
equipped with 8GB DDR3 SODIMM with MatLab. The source
code is provided provided online.4 A graphical representation
of the lumped product DTMC is shown in Figure 14.

4www.informatik.uni-oldenburg.de/~phoenix/matlabcallaway.zip
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Figure 14. 1000 housings TCL power grid

Notably, there are no zero-probability transitions. The
transitions in the blue areas are just very close to zero. The
figure shows in the top row, in which all housings are off,
a steep maximum at 100 housings simultaneously switching
on. The bottom row, in which all housings are on, shows
a shallower distribution with the maximum at 800 housings,
indicating that about 200 housings simultaneously switch off.

With each housing being added, the matrix grows. Hence,
each further addition takes longer than the previous one. The
graph in Figure 15 indirectly shows how the computation time
of adding further housings increases with each housing.
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Figure 15. Time consumption to compute 1000 housings TCL power grid

Compared to decomposing hierarchical systems and other-
wise mutually depending processes as discussed in [14], com-
posing mutually independent processes is rather simple. With
the households being homogeneous, one surrogate DTMC can
be multiplied with the Kronecker product over and over again
with the resulting matrix being lumped after each iteration.
The example in this section used the coarsest possible matrix
— in which the θ-domain of the temperature is not partitioned
— to make a point: Writing a script to compose independent
processes can be as trivial as in this case. Then, generating
matrices containing thousands of states automatically is just a
matter of time. The DTMC shown in Figure 14 was generated
in less than an hour on a tablet PC with the specifications given

www.informatik.uni-oldenburg.de/~phoenix/matlabcallaway.zip


above. Contrary, constructing hierarchically structured systems
is not as easy. The example in [14] contained only |M| = 648
states and |M′| = 324 states. Its computation by hand took
about two weeks. The number of states is not a good indicator
to reason about scalability. Instead, the effort that is required to
construct a DTMC to compute the desired measure can should
used.

B. The risk of blackout – limiting window reliability

The probability that the system blacks out is the accumu-
lated transition probability of too many houses switching on
or off simultaneously. For instance, if the system blacks out
with 1000 simultaneous houses switching, the probability for
a blackout computes as pr(

−−−−→
0, 1000) · prΩ(〈0〉) + pr(

−−−−→
1000, 0) ·

prΩ(〈1000〉). The index here refers to the number of simul-
taneous switches necessary to cause a blackout. When the
system breaks down for even 999 simultaneous switches, the
probability for blackout computes as pr(

−−−−→
0, 1000) · prΩ(〈0〉)+

pr(
−−−−→
1000, 0)·prΩ(〈1000〉)+pr(

−−−→
0, 999)·prΩ(〈0〉)+pr(

−−−→
999, 0)·

prΩ(〈999〉)+pr(
−−−−→
1, 1000)·prΩ(〈1〉)+pr(

−−−−→
1000, 1)·prΩ(〈1000〉)

and so forth. Figure 16(a) shows the stationary distribution that
is required to compute the probability to crash. Figure 16(b)
shows the probability to crash according to the required
number of simultaneous switches that are required for the
system to blackout.
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Figure 16. Determining the risk to crash

In this scenario, we are interested in the probability that
closure is not violated within a given time window. The
limiting window reliability is a probability distribution on first
stopping times. In contrast to LWA [18], it is a probability on
stopping times of taking a wrong transition, violating closure,
while LWA measures the probability of taking a right transition
to achieve convergence. The limiting window reliability, which
is the chance to survive a given time window w, is simply
computed by (1−pr i)

w with respect to the critical number of
simultaneous accumulated switches i.

With the limiting window reliability distribution, the on-
going risk of eventually suffering from a blackout can be
computed. Figure 17 shows how the probability for each safety
predicate — that is, either one house suffices to cause a
blackout, or two, or three . . . — converges to 1 over time.
The x-axis showing the number of households sufficing to
cause a blackout is cropped at 100 but extends to 1000. With
fewer houses required to cause a blackout, the probability for a
blackout increases at a faster pace. The figure shows that more
than about 60 houses are required in the predicate to pose a

thread for the community to survive the first 100 time steps
from the limit onwards.
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Figure 17. Limiting window reliability over 100 time steps

Figure 18 shows the same plot with the reliability being
encoded in color for a larger time scale. This perspective
shows that i) the demarcation between unreliable (dark red)
and reliable (dark blue) is sharp (white) and ii) providing
a safety threshold of even less than 100 houses suffices to
provide for a high reliability for a time window of 10, 000
computation steps. Notably, the critical number that the graph
converges to in the limit, is the total number or housings. What
seems like counting to infinity twice — the limiting window
reliability starts in the limit and then converges to the limit
again — opens an important discussion. Similar to limiting
reliability as discussed by Trivedi [25, p.321], the limiting
window reliability for a limiting window is zero, too. In the
limit, the red area extends to 1000 households.
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Figure 18. Limiting window reliability over 10,000 time steps

C. The result

The example demonstrated how a transition model and
safety specifications can be derived from a real world system
and how they can be utilized in the context of this paper. With
an initial probability distribution, the risk of eventually taking
a transition in which too many households simultaneously
switch in the same direction can be computed. Contrary to
LWA that computes the probability that the system reaches
the legal states within a time window, the window reliability
computes the probability that a system leaves the legal states in
a time window. Contrary to the limiting reliability [25, p.321],
it is reasonable in this context to compute the limiting window
reliability. Consider the system to be initially supported by



a vent and an energy buffer to compensate for voltage peaks
until it converges sufficiently close to its stationary distribution.
From thereon, the limiting window reliability determines the
probability with which the system survives a desired time
window by summing up all relevant transition probabilities
over that time.

V. CONCLUSION

This paper provided a practical case study to discuss
important aspects. It highlighted

1) that determining probabilistic inputs is crucial to acquire
realistic results with the presented methods,

2) that a DTMC and a safety predicate can be derived for
some real world systems,

3) that absence of fault propagation does not automatically
imply process independence and bisimilarity, and

4) that the notion of limiting/instantaneous window prop-
erties can be easily adapted to suit other contexts.

It furthermore demonstrated how synthesizing a transition
model benefits from the processes being independent. The
constructed DTMC accounts for thousand processes and was
generated in less than an hour. On the contrary, the transition
models of hierarchic systems cannot be constructed as easy.
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