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Abstract

Fault tolerance measures can be used to distinguish be-
tween different self-stabilizing solutions to the same prob-
lem. However, derivation of these measures via analysis
suffers from limitations with respect to scalability of and
applicability to a wide class of self-stabilizing distributed
algorithms. We describe a simulation framework to de-
rive fault tolerance measures for self-stabilizing algorithms
which can deal with the complete class of self-stabilizing al-
gorithms. We show the advantages of the simulation frame-
work in contrast to the analytical approach not only by
means of accuracy of results, range of applicable scenarios
and performance, but also for investigation of the influence
of schedulers on a meta level and the possibility to simulate
large scale systems featuring dynamic fault probabilities.
Keywords: Fault Tolerance, Self-Stabilization, Simulation,
Reliability, Availability

1 Introduction

High dependability has become an important design re-
quirement for distributed systems owing to their pervasive
usage in safety-critical applications. System designers en-
dow such mission-critical systems with fault tolerance to
meet the dependability requirements. A fault-tolerant dis-
tributed system strives to fulfill its specifications in spite of
failures.

Fault-tolerant distributed systems can be broadly classified
into two categories: masking fault-tolerant systems and
non-masking fault-tolerant systems [14]. Masking fault-
tolerant distributed systems are able to “disguise” the faults
and function according to the specifications as long as the
faults belong to particular classes. Au contraire, an external
observer is able to witness incorrect behavior for a certain
period of time before non-masking fault-tolerant systems
again function according to their specification.
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Self-stabilization is an elegant technique to provide non-
masking fault tolerance. A self-stabilizing system — from
any initial state — reaches a legal set of states within a fi-
nite period of time and does not leave this set of states on
its own [9]. The self-stabilization property becomes ex-
tremely attractive under the assumption that the system is
afflicted only by transient faults (i.e., non-permanent and
non-intermittent faults) that only perturb the system state.
Thus, a self-stabilizing system recovers from “bursts” of
transient faults within finite time irrespective of the quan-
tum of perturbation. Due to this notion of autonomy, self-
stabilizing systems provide many algorithmic solutions ap-
plied in the context of, among others, sensor networks,
wireless networks and ad hoc networks [12, 17].

A system designer, when confronted with the dilemma of
choosing amongst multiple fault-tolerant solutions to the
same problem, uses fault tolerance measures to arrive at
a decision. Among the fault tolerance measures defined
in the literature, reliability, instantaneous availability and
limiting availability are most commonly used [19]. Due
to almost three decades of sustained research, the litera-
ture is replete with multiple self-stabilizing algorithms to
solve many problems in distributed computing. Usually the
quality of a self-stabilizing algorithm is characterized by the
worst-case time/space complexities. However, these mea-
sures might not really capture the behavior of a system in an
implementation scenario as such extreme conditions mani-
fest very rarely during a system’s lifetime. In addition, two
self-stabilizing algorithms might have the same worst-case
complexity while their average-case complexity might dif-
fer.

To overcome these limitations, notions of reliability, instan-
taneous availability and limiting availability have been de-
fined for self-stabilizing algorithms in [7] and a method
to determine these measures for a sub-class of silent self-
stabilizing systems is outlined (see Section 2.2 for a brief
summary). In [7] fault tolerance measures for non-masking
fault-tolerant systems are defined for the first time. Yet, the
analysis procedure presented is limited with respect to scal-



ability and the classes of self-stabilizing algorithms it can
deal with. As these fault tolerance measures are critical de-
sign decision tools, the limitations of the analysis have to be
circumvented for large self-stabilizing systems. We there-
fore propose a simulation framework that can be used to
calculate these measures in absence of sufficiently powerful
analytic methods.

In this paper, we present a simulation framework called
SiSSDA ( Simulator for Self-Stabilizing Distributed Algo-
rithms) to determine the above mentioned fault tolerance
measures. The simulator is written in the programming lan-
guage Erlang [1,2]. SiSSDA can simulate self-stabilizing
algorithms under different execution semantics and it of-
fers the user functionality to set-up dynamic “fault environ-
ments.” A fault environment models the temporal and lo-
cal variations of the transient faults. Under similar fault
environments and the same set of distributed algorithms,
SiSSDA is able to produce results similar to the results
of the analysis procedure as presented for a set of differ-
ent communication topologies. SiSSDA also overcomes the
limitations of the analysis procedure by being able to calcu-
late fault tolerance measures for systems with a larger num-
ber of processes under varied fault environments. SiSSDA
has been designed in a distributed fashion such that for large
systems the load can be shared among multiple computers.
The rest of the paper is organized as follows. In Section 2
we present a short summary of the analytic method along
with the system model and compare the properties of exist-
ing distributed algorithm simulators with our requirements.
The architecture and salient features of SiSSDA are dis-
cussed in Section 3. Section 4 contains and discusses the
simulation results for two variants of self-stabilizing span-
ning tree algorithms for a set of network topologies fol-
lowed by the conclusion in the final section.

2 Preliminaries

In this section, for conciseness of the paper, we briefly re-
view the analytical method of [7] to derive fault tolerance
measures of self-stabilizing algorithms and its limitations.
We then elaborate on the need of simulation to determine
these measures and survey the existing simulators and their
usefulness in the application context.

2.1 System Model

A distributed application (referred to as system interchange-
ably) constitutes of a finite number of processes, that runs
a distributed algorithm, interconnected by a communication
infrastructure. A distributed algorithm is specified as a set
of sub-algorithms. Each of the processes executes a sub-
algorithm of the distributed algorithm. A system is said to
be self-stabilizing if and only if, irrespective of the starting
state, it reaches a set of safe states within a finife number of
steps and remains in it in the absence of new faults [9].

The system state, that indicates whether the system is in its
predefined set of legal states or not, reflects the contents of

local variables of the constituting processes and the com-
munication infrastructure.

The underlying execution semantics plays an important role
while proving the property of self-stabilization of a dis-
tributed algorithm. Serialized semantics implies that at any
time instant only one process takes a step, whereas in over-
lapping semantics a subset of the processes may execute a
step at one time instant [3]. An extreme case of overlapping
semantics is maximum parallelism semantics where all the
eligible processes in the system execute a step at one time
instant [10].

2.2 Dependability Analysis and its Limi-

tations

A method to determine reliability, instantaneous availabil-
ity and limiting availability of self-stabilizing distributed al-
gorithms has been presented in [7]. Reliability for a self-
stabilizing system is defined as the probability that the sys-
tem satisfies its safety predicate at time instant k& without
ever violating it in time period [0, k|. Instantaneous avail-
ability of a self-stabilizing system at time instant £ is de-
fined as the probability that the safety predicate holds pro-
vided it was satisfied at time instant 0. In contrast to the
definition of reliability, the definition of availability allows
the system to be perturbed by intermittent bursts of fail-
ures during system lifetime. The notions of reliability and
availability for the self-stabilizing systems are based on the
assumption that a self-stabilizing system is in “up-phase”
when it satisfies its safety predicate. It is trivial to infer
from the definition of self-stabilizing systems that they do
not have predefined initial states. An implication of this
property is that the set of possible initial states is equal to
the complete state space of the system, which is, in most
general case, a denumerably infinite set. Hence, the calcu-
lation of the dependability measures becomes intractable as
all the transitions must be accounted for during the anal-
ysis. This problem is circumvented in [7] by partitioning
the state space of the algorithm using a method similar to
predicate abstraction [11]. The state space of the algo-
rithm is partitioned into configuration classes where each
configuration class is characterized by a predicate over the
global state of the algorithm. Such partitioning of the state
space implies that for the silent self-stabilizing algorithms
the set of safe states is represented by a single configura-
tion class. The global predicate can in turn be composed
of local predicates defined over each process executing the
algorithm. For locally-checkable self-stabilizing algorithms
[4] with n processes, this method leads to an abstract state
space of 2" configuration classes. Unlike the definition of
execution used in literature [9], the notion of observed ex-
ecution is used during the analysis. An observed execu-
tion allows manifestation of a transient fault as a fault step
along with the transitions due to computation by a process,
called computation steps, in the system. In order to deter-
mine the probabilities of transitions between different con-
figuration classes, each sub-algorithm class of a distributed



algorithm is analyzed. The probability that a transition takes
a generic process from a state satisfying the local predicate
‘P1 to a state satisfying the local predicate Ps, is determined
for each pair of local predicates. Serialized execution se-
mantics is assumed during this phase of the analysis and
the scheduler is modeled via a tuple of probabilities. A
Markov chain characterizing the abstracted system is then
constructed with help of the probabilities derived as de-
scribed. The matrix representing the Markov chain is next
transformed to account for fault steps caused by the tran-
sient faults. The resultant Markov chain is used to deter-
mine the desired fault tolerance measures. If required please
refer to [7] for a detailed description of the analytic method.
Although the abstraction technique used in the analysis al-
leviates the state space management problem, it leads to in-
accuracy in the measures obtained. The accuracy of the re-
sults can be improved by increasing the granularity of the
partitioning, however it makes the analysis computationally
demanding. In addition to that, the analysis also assumes
pessimistic error propagation in the system. It implies that,
irrespective of the fact whether a value read by a process is
used in computation or not, a process reading an erroneous
value itself is considered erroneous. This, in turn, implies
that the values of the fault tolerance measures derived rep-
resent lower bounds. Additionally, the analysis method is
not directly suited for the self-stabilizing algorithms whose
safety condition can not be expressed as state predicate. Un-
fortunately, the analysis still does not scale well because the
number of nodes in the Markov chain increases exponen-
tially with the number of processes in the system.
2.3 Specification of the Simulator

In the light of the limitations of the dependability anal-
ysis discussed above, the quest for a simulation framework
becomes apparent where the values of the fault tolerance
measures of a self-stabilizing algorithm under a given exe-
cution environment can be evaluated for substantially larger
applications and a larger class of of application scenar-
ios. As the algorithm is executed as such, an inaccuracy
introduced by the abstraction techniques would not affect
the values of the fault tolerance measures. Furthermore,
the simulator should be able to determine the fault toler-
ance measures for the whole class of self-stabilizing dis-
tributed algorithms. An implication of this requirement is
that the developer should be able to specify customized
global predicate-checkers. In order to cope with systems
having a large number of processes, the simulator should be
able to run simulations in a distributed manner if required.
This also implies that subsets of potentially spatially sep-
arated processes may be combined to still share one com-
mon machine for simulation while other subsets are inter-
connected on other machines.
Generally, serialized semantics is used while proving the
correctness of the algorithm whereas overlapped seman-
tics is used to study its behavior in an implementation,
though the property may not hold under altered semantics

[3]. However, some distributed algorithms exhibit the self-
stabilization property independent of the underlying seman-
tics. Thus, the simulation framework should be able to sim-
ulate the algorithm under any one of the execution seman-
tics.

Regarding prospectus needs in fault model driven model
checking, a facility to incorporate environmental sources of
defect, disregarding the underlying fault model depending
on the system, is also required for future analysis.

Hence, the simulator has to be built as a framework to eas-
ily adapt future algorithms, system models, fault models,
schedulers, execution semantics and environmental influ-
ences; notably, probabilistic assumptions defined for one
system are not required to be static but may also be dynamic
and prone to some algorithmic behavior.

2.4 Related work

We now review existing distributed algorithm simulators in
the light of the requirements outlined above.

The Distributed Algorithms Platform (DAP) [5] provides an
environment for simulation and testing of distributed algo-
rithms. It also provides a graphical user interface for visu-
alizing and controlling the execution of algorithms. DAP
implements each simulated process as a separate operating
system process and thus offers the possibility of running
simulations in a distributed manner. The modular architec-
ture of DAP allows to abstract away details such as the com-
munication infrastructure in the “topology layer.” However,
it is not possible to add customized “observers” to check
whether the simulated algorithm satisfies a particular pred-
icate. In addition, it does not provide functionality to sim-
ulate a distributed algorithm under different execution se-
mantics.

SimUTC [21] is a C++SIM-based toolkit for the simula-
tion of fault-tolerant distributed systems. SimUTC is used
to simulate round-based clock synchronization algorithms
for distributed systems. The framework primarily consist
of three modules, namely, Controller, EvalSys and
Network. The Controller module, as the name im-
plies, is the “lynch pin” of the framework and controls the
simulation. EvalSys is the GUI which acts as front-end
of the Controller and performs data analysis. The un-
derlying communication infrastructure is abstracted by the
Network module. All the modules manifest themselves
as separate processes in the C++SIM framework and the
simulation is run on a single workstation. SimUTC is able
to simulate clock synchronization algorithms, which form
a very specific class of distributed algorithms. Also, it is
not feasible to simulate distributed algorithms employing a
large number of nodes because distributed simulation is not
possible.

A framework for the simulation of distributed algorithms
built upon OPNET [13] and Xplot has been presented in
[15]. OPNET acts as the simulation engine and Xplot is
used to provide graphical output. The three layer modeling



hierarchy of OPNET is used to specify the algorithm and
the execution environment to be simulated. The “network
domain” is used to specify the network topology and the
“node domain” describes the architecture of the individual
nodes. The distributed algorithm itself is presented to the
“process domain” as a finite state machine. But this simula-
tion framework also suffers from the lack of scalability and
the functionality to simulate customized execution seman-
tics.

LYDIAN is a framework for simulation and visualization
of distributed algorithms primarily used for education pur-
poses [16]. LYDIAN uses an entity called “experiment” to
specify the distributed algorithm and the execution environ-
ment. An experiment comprises of a “protocol” to be sim-
ulated, associated with a “network structure” and a “trace
file.” The algorithm is specified in a language with C-like
constructs. However, as the target group is students, this
simulator does not provide functionality to determine fault
tolerant measures of the simulated algorithm.

While the simulators and frameworks mentioned above all
feature some graphical user interface to prepare the col-
lected data, they lack in functionality required. As it is obvi-
ous, none of the available distributed algorithm simulators
satisfies the requirements outlined. We set out to develop a
simulation framework tailored to our needs. In the follow-
ing section, we explain the architecture and functionality of
the result.

3 The Simulation Framework SiSSDA

We will now explain the modular architecture of SiSSDA
followed by the functionality offered by it. We also elabo-
rate on the format in which information about the algorithm
and the fault environment is provided to the simulator.

3.1 Architecture of the Simulator

The basic layout is shown in Figure 1. SiSSDA is designed
to run in both, distributed as well as emulated distributed en-
vironments. It is implemented in the purely functional lan-
guage Erlang [2] that supports embedding of foreign pro-
gramming languages. The target user of the simulation

scheduler monitor
server accuracy guard

| fault environment | | safety predicates |

Figure 1. SiSSDA architecture

framework is a self-stabilizing systems designer. SiSSDA
follows a modular approach as this offers a high degree of
flexibility to the user. It primarily consists of four modules:
server, fault injector, client and fault environment. We next

explain the functions of the first three modules while the
latter is discussed in Section 3.2 as it is more complex.

Server Module The server is the backbone of the sim-
ulation framework and controls the entire simulation. It
chooses the processes to be activated in each execution
step by incorporating an interface to choose between sev-
eral schedulers. A single process or a subset of processes
may be enabled by the server depending on the semantics
specified by the user and the scheduler employed.

In order to determine whether the safety predicate of a self-
stabilizing algorithm is satisfied or not, the local state of ev-
ery simulated process is collected after each execution step.
E.g., if a process is granted one execution step by the sched-
uler it might be perturbed by the fault injector. To determine
the global system state, each process reports it’s local state
to the monitoring server module that calculated whether the
global safety predicate is satisfied or not.

The server module also provides two possibilities to define
a stop criteria: (1) the user can define the exact number of
steps to be executed or (2) define accuracy guards that stop
the simulation autonomously as soon as a certain bound of
accuracy has been reached. These accuracy guards are fur-
ther discussed in Section 3.2.

Fault Injector The task of simulating the encompassing
implementation scenario is entrusted to the fault injector.
The fault injector is, despite some schedulers, the only mod-
ule that uses a random number generator.

During a simulation, the behavior of the fault injector is
specified by the desired fault environment (see Section 3.2).
The fault injector waits for the signal from the enabled pro-
cesses, i.e. from processes that were granted an execution
step, and then, depending on the fault environment, decides
whether the enabled process should be perturbed or not. If
a process is chosen to be corrupted, the fault injector writes
an erroneous value to a subset of it’s memory register. Note
that the values written by the fault injector may be equal
to the process’ current local state (then acting like a benign
fault).

Client Module The client module implements the dis-
tributed algorithm under investigation. It can be run on a
single or on multiple workstations depending upon the num-
ber of processes and the structure of the system model to
be simulated. The mapping of a client module to a sub-
algorithm is done by the server module based on the con-
figuration file during the initialization phase. By default, a
client is always in “listening” mode and it becomes active
when it receives an enabling signal from the server. An en-
abled, non-fault-injected client reads the states of its neigh-
bors and computes its own local state based on the values
read. Perturbed nodes are directly provided an erroneous
value which is used during calculation of the current state.
Each node stores the derived own value as well as the val-
ues provided by each neighbor. Depending on the definition



of the local safety predicates, two functionalities are imple-
mented in SiSSDA: (1) states of neighboring nodes (stored
in memory cells) are disregarded and a node satisfies the lo-
cal safety predicate if the correct value is derived, or (2) not
only the current state, but also all neighbors’ states (in mem-
ory cells) are accounted for calculation of predicate satis-
faction. The latter case is more pessimistic as errors might
persist even if every node could derive its correct state.

3.2 Features of SiISSDA

SiSSDA can be adapted to provide certain fault tolerance
measures for all classes of self-stabilizing algorithms un-
der various fault environments and precision of the obtained
measures can be controlled by the user. These classes also
cover self-stabilizing systems that are beyond the analysis
for feasibility reasons. In the sequel, we describe SiSSDA
functionalities and capabilities in more detail.

Fault Environment and Fault Model In order to provide
a high granularity in possible errors, faults belong to one of
two classes. In the fault model, errors occurring during ex-
ecution due to prescribed behavior (like failed communica-
tion or erroneous components) are described. Whether such
an error occurs is determined a priori, i.e. before execu-
tion of a step. Such an error perturbs the execution step and
might corrupt the system state.

On the other hand, environmental influences like tempera-
ture, lighting or external feedback components might also
influence the system without being influenced by the sys-
tem. Using the data structure, these faults are applied a
postiori, i.e., they affect the system state after execution of
a step, and are accordingly independent of the fault model.
These environmental faults are called fault environment (in
contrast to the fault model). The fault environment, as
previously mentioned in Section 3.1, is not only able to
corrupt the system state, but for future investigation, re-
garding for example the scheduling behavior, it can also
change the scheduling behavior, the degree of parallelism,
the whole system structure, error probabilities and the algo-
rithm applied. The measures observed as well as the accu-
racy guards, as discussed below, are not prone to the fault
environment. Notably, the fault environment is a feature of
SiSSDA that was not used during this work as it was neither
used in the analytic method.

The simulator can be used to model various concrete fault
environment scenarios with the help of the error probability
distributions. SiSSDA offers functionality to specify error
probabilities for the links and the nodes in the simulated
systems. It is also possible to simulate entities with time-
variant error probability distributions. For instance, the
time-variant error probability distributions for both, links
and nodes, can be used to simulate a wireless sensor net-
work. One can also provide a different error probability
distribution for each entity to simulate heterogeneous net-
works.

Even though real systems might require the consideration
of such (dynamic) effects, in our cause, to be as close as
possible to the analytic approach for comparison reasons,
we used a static fault model and set the fault environment to
neutral behavior.

Execution Semantics The size of the subset of processes
enabled by the server in each execution step is specified by
the user. Thus, SiSSDA can simulate the algorithms under a
wide variety of execution semantics varying from serialized
semantics on one end of the spectrum to maximum paral-
lelism semantics on the other hand. In addition, simulations
can also be run under a probabilistic scheduler where the
user specifies the probability of a process being enabled in
an execution step for each process in the system. This fea-
ture can be harnessed to run simulations even under an un-
fair daemon. Furthermore, accumulating effects can be ac-
commodated as schedulers might disregard nodes, e.g. due
to some specified hardware wearout.

Accuracy Guard The precision of the fault tolerance
measures calculated by SiSSDA can be controlled with help
of accuracy guards. An accuracy guard primarily specifies
the number of digits past the decimal point to which a fault
tolerance measure must “stabilize” before it can be reported
as the result of a simulation. An accuracy guard is defined
by (1) the minimum number of execution steps, (2) the last
n calculations of the desired fault tolerance measure, and
(3) the maximum acceptable deviation within the set of the
last n results. An accuracy guard is “active” when all three
conditions are satisfied. Clearly, a stricter accuracy guard
leads to longer simulation times while on the other hand
a weaker accuracy guard ensures that the simulation ends
sooner. However, in the latter case the accuracy of the re-
sult obtained may not be too high. Another observation is
that same accuracy guards might return results of different
accuracy for different scenarios. We conducted some exper-
iments to see the validity of these observations. We simu-
lated the self-stabilizing mutual exclusion algorithm [8] for
an eight-process topology (cf. Figure 2) and monitored its
limiting availability for the first 20, 000 steps. The fault en-
vironment and the fault model featured the same fault prob-
ability for all the nodes with no further side effects like par-
allel execution semantics or change of the scheduler. The
result of the simulation is shown in Figure 3. It is easy to see
that the variation of availability decreases with the length of
the simulation run. We simulated the self-stabilizing mutual
exclusion algorithm under two different accuracy guards to
show the necessity of a sufficient strictness of the accuracy
guards applied. Figure 4 shows the values obtained dur-
ing these experiments. While for sufficiently strict accuracy
guards, the fault tolerance measure observed (namely avail-
ability) decreases exponentially with an increase of error
probability, the values obtained for weak accuracy guards
are not accurate enough. Hence, the graph marked by the
squares shows an unsteady progress.



Figure 2. An eight-process topology

0.30

NS e
/
f

0.20

Figure 3. Limiting availability measured in the
course of the first 20.000 steps

10

Availability

Comparing Accuracy Guards

1\ o
7 m Insufficiently Strict
" Accuracy Guards

 Sufficiently Strict
- Accuracy Guards.
. hY
20 S~
10 e .
=

0
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17
Error-Probability for each receiving node and each edge

Figure 4. Results determined depends on
strictness of accuracy guards employed

Monitoring Simulation In some cases, it might be im-
portant to trace the simulation. SiISSDA provides a logging
facility such that the execution trace can be analyzed after
the end of the simulation. This feature is particularly use-
ful when one is interested in identifying those illegal states
which are attained frequently and this knowledge can fur-
ther be used to re-engineer the system in order to increase
some critical dependability measures. In addition, SiISSDA
can also be run in verbose mode which is interesting from
the instructional point of view.

Input Specification A scenario is specified in a configu-
ration file which is read by the server module at the begin-
ning of a simulation. A scenario specifies the distributed
algorithm to be simulated along with the desired simulation
environment. It is composed of four parameters. The first
parameter links the algorithm which is to be simulated. The
second parameter specifies the topology according to which
the processes communicate. The third parameter specifies
the accuracy guard or the number of steps to be executed,
respectively. The error probability distribution is given by
the fourth parameter. The distributed algorithm is provided
through external Erlang modules which are specified in the
configuration file.

A detailed description is given in the SiSSDA manual [18]
where class diagrams, additional functionalities and ideas
for further extension are also presented.

4 Application of the SiSSDA

In this section, we present the results of experiments carried
out with SiSSDA. In order to compare the results of the sim-
ulations with the analytic approach of [7], we set up exactly
the same scenarios for both, simulation and analysis.

For the scenarios, we chose two variants of self-stabilizing
spanning tree distributed algorithms along with a set of
eleven different topologies. Although the algorithm itself
is rather simple, it forms the core of link management
protocols and, thus, is critical for smooth network opera-
tions [20]. Each topology consists only of one distinct and
three common nodes and bidirectional communication links
modeled via communication registers. As shown in Figure
5 there are exactly eleven topologies that meet these con-
ditions. To show the advantages of the simulator, we also
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Figure 5. Eleven four-process topologies



chose a scenario with an eight-process topology, that is in-
feasible for the analytical approach. To show the scalability
of the simulation framework, we further analyzed the run-
time behavior within a distributed environment depending
on the number of nodes equally distributed on a different
number of machines. This comparison is discussed in Sec-
tion 4.3. The fault-tolerance measure we chose to observe is
limiting availability. We describe the algorithms in the next
section.

4.1 Case Studies

As explained in the introduction, one of the primary goals
for deriving the fault tolerance measures is to compare dif-
ferent self-stabilizing solutions to the same problem. To-
wards that end, we chose two versions of the solution for
the self-stabilizing spanning tree problem. We compared
the breadth-first search (BFS) spanning tree algorithm of
[9] and depth-first search (DFS) spanning tree algorithm of
[6].

1 do
2 true —
3 od

write(pathy :== 1)

Figure 6. DFS sub-algorithm for the root
process p;, from [6].

1 do
2 j&{0,....,0y — j:=

random value in {0, ...,d}
3 je€ {0,,(5} —
4 do
5 jef{0,....,6—-1}y — j:=

Jj+1; read(read_path; := path,,;))

6 j=86 — j:=0; write(path,;:=

min{|read_path; o a;(1)|n,1 <1< 6})
7 od
8 od

Figure 7. DFS sub-algorithm for a non-root
process p;,i > 0, from [6]

The DFS spanning tree algorithm (see Figures 6 and 7)
builds the rooted DFS tree of a graph in self-stabilizing
manner. The graph consists of a special node called root
node and all other nodes are called non-root nodes. Every
node has a local variable called path which encodes the re-
sultant tree. A path is a sequence of node ids starting with
“1.” For each node p;, the variable path; encodes the path
from p; to the root node. The root node always assigns “_1”
to its path,; variable. All other nodes 1) read the path vari-
able of all their neighbors, 2) concatenate their own id to
the shortest path variable, and 3) assign the concatenated

shortest path variable to their path variable. The system is
in a safe state if and if only all the path variables contain the
shortest path to the root node.

1 do

2 m¢g{0,...,6} —
{0,...,6 -1}

3 me{0,...,6 -1} — :
m+1; write(rim, = (0,

4 m=46 — m:=0

5 od

m := random value in

)

Figure 8. BFS sub-algorithm for the root
process p, from [9]

The BFS spanning tree algorithm (see Figures 8 and 9),
likewise, builds the rooted BFS tree of a graph with a root
node and multiple non-root nodes. Each process has a dis-
tance variable which contains the minimum distance from
the root node to that node. In addition, each process owns
communication registers which consist of two fields: 1) a
distance field and 2) a parent field. The distance field of
each communication register contains a copy of its own dis-
tance variable. The parent field is set to 1 for the commu-
nication register representing the link between a node and
its parent. The root repeatedly writes O to both fields of its
communication registers. Each non-root node 1) chooses
the minimum of the distance variables of its neighbors, 2)
increments it by 1, and 3) assigns it to its own distance vari-
able. It then 4) copies this value to all its communication
registers and 5) the parent field of the communication regis-
ter representing the link to the neighbor with least distance
variable is set to 1.

Both, analysis and simulation, were done with a static fault
environment. The fault tolerance measures have been de-
rived under serialized semantics as both algorithms are self-
stabilizing under these semantics [9]. We also used uniform
error probability with respect to the processes in the sys-
tem implying that all the nodes were equally vulnerable to
faults. This is referred to as global node error probability
(GNEP) in the following. We next describe the set-up of the
simulations for the scenarios described above.

4.2 Running the Simulations

Running the simulator consists of three steps. (1) Change
the scenario by editing the file global_config.hrl as de-
scribed in the enclosed README of [18], i.e., set the al-
gorithm to be simulated, the topology, the GNEP and the
hostnames as required. To keep compiling times low it
is advised to prune such included topologies that will not
be simulated. (2) The source code needs to be compiled
with erlc *.erl from the shell. (3) Start one shell in server
mode. After starting another shell as fault injector, simu-
lation commences until it gets interrupted by the user or it
reaches the accuracy guards (cf. Section 3.2).



1 do
2 1¢{1,2} vm ¢{0,...,6} — [:=random
value in {1, 2}; m := random value in

{0,...,6 =1}

3 le{l,2} Ame{0,...,0} —

4 do

5 I=1Ame{0,....,0 -1} — m:=

m+1; Irmi == read(ra, (m)i)
6 Il=1Am=6 — 1[1:=2 m =
0; FirstFound := false
7 I=2Ame{0,...,0 -1} —
8 m:=m+1; dist =
14 min{lr;.dis | 1 <1<}

9 if

10 —FirstFound N lry,;.dis =
dist—1 —  FirstFound :=
true; write(ria,(m) =
(1,dist))

11 FirstFound V lr,;.dis # dist —
1 —  write(ria,(m) = (0,dist))

12 fi

13

14 l=2Am=6 — 1:=1; m:=0

15 od

16 od

Figure 9. BFS sub-algorithm for a non-root
process p;,i > 0, from [9]

The version of the simulator supplied is designed to run
in a multi-processor environment. It will automatically ac-
quire spare resources. Client processes are automatically
created by the server node.

4.3 Results

The GNEP was varied from 0.00 to 0.40 via incremental
steps of 0.05. The GNEP was not increased beyond 0.40
because the limiting availability converges to 0 and does
not change much after a GNEP of 0.40. Figures 10 and 11
show the variation of availability with respect to the GNEP
for the analytical approach. The variation of limiting avail-
ability determined by the simulations is shown in Figures
12 and 13. The deviation of limiting availability for a sin-
gle scenario across ten experiments was sufficiently small
as shown in Figures 14, 15 and 16. Each simulation was
run for one million execution steps which is sufficient as
discussed at the end of this section. The decrease of
limiting availability follows an exponential pattern for both,
the analysis and the simulation. Also, the DFS spanning
tree algorithm outperforms the BES spanning tree algorithm
by both methods. This can be attributed to the fact that the
BFS spanning tree algorithm uses a far larger number of
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Figure 12. BFS simulation results
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Figure 16. Reliability of results with dynamic
GNEP

variables than the DFS algorithm, namely the memory reg-
isters, and thus all these variables must be in a correct state
such that the safety predicate is satisfied. The variation of
limiting availability among different topologies for the same
value of GNEP can be attributed to the connectivity of the
respective topology. The more connected the topology is,
the higher is the impact of error propagation. The limiting
availability derived by analysis method is bounded by num-
ber of configuration classes used to construct the respective
Markov chain. Thus, for a four-process system it is bounded
by 0.125 as shown in the plots. The limiting availability de-
rived analytically approaches the value derived during sim-
ulation if the number of configuration classes is increased.
However, this makes the analytic method extremely compu-
tationally demanding.

We also simulated both self-stabilizing spanning tree algo-
rithms on an eight processes system topology (see Figure
2) to gauge the scalability of SiSSDA. Figure 17 shows the
result of the simulations for this system. In order to further
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Figure 17. Simulation of an eight-process
topology

test the scalability of the simulator, we ran simulated algo-
rithms on topologies with large numbers of nodes. We sim-



ulated the self-stabilizing BFS algorithm on random graphs
with 64, 128, 256, 512 and 1024 nodes. It is advised to run
each client, server and fault injector application on a differ-
ent machine if the number of simulated processes is above
a certain threshold. For instance, during our experiments
a machine with 1GB of main memory could not simulate
a topology with more than 256 nodes, on the other hand a
topology with 1024 nodes was handled by a machine with
4GB memory.

All the simulations were executed on both, a single system
and multiple systems, and time required to meet the accu-
racy guards for each scenario was compared. The time re-
quired for the simulation is proportional to the size of the
topology. If the simulator is run over local network, overall
computation time increases considerably because computa-
tion time is small in comparison with message passing time.
Nevertheless, it is advantageous to run the simulator in dis-
tributed fashion in order to simulate very large topologies.
Thus, the number of nodes that can be simulated can be ar-
bitrarily large modulo the number of systems available for
simulation. Also, running time decreases linearly for com-
putationally demanding algorithms.

As shown in Figures 14 and 15, results can be reproduced
with a sufficient accuracy regardless of the GNEP applied.
Since accuracy margins are relative to the GNEP, variance
in results is negligible.

5 Conclusion

We presented a simulation framework to determine fault
tolerance measures for self-stabilizing algorithms to over-
come the limitations of the currently available analytic
method. SiSSDA is able to calculate the fault tolerance
measures for self-stabilizing systems under various imple-
mentation scenarios. SiSSDA has a modular design which
provides flexibility with respect to the specification of algo-
rithms. We explained constituting modules of SiSSDA and
described their functionalities. The results of simulations
for two self-stabilizing algorithms under similar assump-
tions were compared to corresponding results of the anal-
ysis and it has been shown that fault tolerance measures de-
rived by simulation were comparable to that of the analysis
procedure. We further showed the capabilities of SiSSDA
which go beyond the capabilities of the analysis procedure.
SiSSDA is able to derive fault tolerance measures for self-
stabilizing systems using a considerably larger number of
processes. It is able to simulate self-stabilizing algorithms
which the analytic method is currently not able to handle.
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