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Abstract

Fault tolerance measures can be used to distinguish be-

tween different self-stabilizing solutions to the same prob-

lem. However, derivation of these measures via analysis

suffers from limitations with respect to scalability of and

applicability to a wide class of self-stabilizing distributed

algorithms. We describe a simulation framework to de-

rive fault tolerance measures for self-stabilizing algorithms

which can deal with the complete class of self-stabilizing al-

gorithms. We show the advantages of the simulation frame-

work in contrast to the analytical approach not only by

means of accuracy of results, range of applicable scenarios

and performance, but also for investigation of the influence

of schedulers on a meta level and the possibility to simulate

large scale systems featuring dynamic fault probabilities.

Keywords: Fault Tolerance, Self-Stabilization, Simulation,

Reliability, Availability

1 Introduction

High dependability has become an important design re-

quirement for distributed systems owing to their pervasive

usage in safety-critical applications. System designers en-

dow such mission-critical systems with fault tolerance to

meet the dependability requirements. A fault-tolerant dis-

tributed system strives to fulfill its specifications in spite of

failures.

Fault-tolerant distributed systems can be broadly classified

into two categories: masking fault-tolerant systems and

non-masking fault-tolerant systems [14]. Masking fault-

tolerant distributed systems are able to “disguise” the faults

and function according to the specifications as long as the

faults belong to particular classes. Au contraire, an external

observer is able to witness incorrect behavior for a certain

period of time before non-masking fault-tolerant systems

again function according to their specification.
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Self-stabilization is an elegant technique to provide non-

masking fault tolerance. A self-stabilizing system – from

any initial state – reaches a legal set of states within a fi-

nite period of time and does not leave this set of states on

its own [9]. The self-stabilization property becomes ex-

tremely attractive under the assumption that the system is

afflicted only by transient faults (i.e., non-permanent and

non-intermittent faults) that only perturb the system state.

Thus, a self-stabilizing system recovers from “bursts” of

transient faults within finite time irrespective of the quan-

tum of perturbation. Due to this notion of autonomy, self-

stabilizing systems provide many algorithmic solutions ap-

plied in the context of, among others, sensor networks,

wireless networks and ad hoc networks [12, 17].

A system designer, when confronted with the dilemma of

choosing amongst multiple fault-tolerant solutions to the

same problem, uses fault tolerance measures to arrive at

a decision. Among the fault tolerance measures defined

in the literature, reliability, instantaneous availability and

limiting availability are most commonly used [19]. Due

to almost three decades of sustained research, the litera-

ture is replete with multiple self-stabilizing algorithms to

solve many problems in distributed computing. Usually the

quality of a self-stabilizing algorithm is characterized by the

worst-case time/space complexities. However, these mea-

sures might not really capture the behavior of a system in an

implementation scenario as such extreme conditions mani-

fest very rarely during a system’s lifetime. In addition, two

self-stabilizing algorithms might have the same worst-case

complexity while their average-case complexity might dif-

fer.

To overcome these limitations, notions of reliability, instan-

taneous availability and limiting availability have been de-

fined for self-stabilizing algorithms in [7] and a method

to determine these measures for a sub-class of silent self-

stabilizing systems is outlined (see Section 2.2 for a brief

summary). In [7] fault tolerance measures for non-masking

fault-tolerant systems are defined for the first time. Yet, the

analysis procedure presented is limited with respect to scal-



ability and the classes of self-stabilizing algorithms it can

deal with. As these fault tolerance measures are critical de-

sign decision tools, the limitations of the analysis have to be

circumvented for large self-stabilizing systems. We there-

fore propose a simulation framework that can be used to

calculate these measures in absence of sufficiently powerful

analytic methods.

In this paper, we present a simulation framework called

SiSSDA ( Simulator for Self-Stabilizing Distributed Algo-

rithms) to determine the above mentioned fault tolerance

measures. The simulator is written in the programming lan-

guage Erlang [1, 2]. SiSSDA can simulate self-stabilizing

algorithms under different execution semantics and it of-

fers the user functionality to set-up dynamic “fault environ-

ments.” A fault environment models the temporal and lo-

cal variations of the transient faults. Under similar fault

environments and the same set of distributed algorithms,

SiSSDA is able to produce results similar to the results

of the analysis procedure as presented for a set of differ-

ent communication topologies. SiSSDA also overcomes the

limitations of the analysis procedure by being able to calcu-

late fault tolerance measures for systems with a larger num-

ber of processes under varied fault environments. SiSSDA

has been designed in a distributed fashion such that for large

systems the load can be shared among multiple computers.

The rest of the paper is organized as follows. In Section 2

we present a short summary of the analytic method along

with the system model and compare the properties of exist-

ing distributed algorithm simulators with our requirements.

The architecture and salient features of SiSSDA are dis-

cussed in Section 3. Section 4 contains and discusses the

simulation results for two variants of self-stabilizing span-

ning tree algorithms for a set of network topologies fol-

lowed by the conclusion in the final section.

2 Preliminaries

In this section, for conciseness of the paper, we briefly re-

view the analytical method of [7] to derive fault tolerance

measures of self-stabilizing algorithms and its limitations.

We then elaborate on the need of simulation to determine

these measures and survey the existing simulators and their

usefulness in the application context.

2.1 System Model

A distributed application (referred to as system interchange-

ably) constitutes of a finite number of processes, that runs

a distributed algorithm, interconnected by a communication

infrastructure. A distributed algorithm is specified as a set

of sub-algorithms. Each of the processes executes a sub-

algorithm of the distributed algorithm. A system is said to

be self-stabilizing if and only if, irrespective of the starting

state, it reaches a set of safe states within a finite number of

steps and remains in it in the absence of new faults [9].

The system state, that indicates whether the system is in its

predefined set of legal states or not, reflects the contents of

local variables of the constituting processes and the com-

munication infrastructure.

The underlying execution semantics plays an important role

while proving the property of self-stabilization of a dis-

tributed algorithm. Serialized semantics implies that at any

time instant only one process takes a step, whereas in over-

lapping semantics a subset of the processes may execute a

step at one time instant [3]. An extreme case of overlapping

semantics is maximum parallelism semantics where all the

eligible processes in the system execute a step at one time

instant [10].

2.2 Dependability Analysis and its Limi-
tations

A method to determine reliability, instantaneous availabil-

ity and limiting availability of self-stabilizing distributed al-

gorithms has been presented in [7]. Reliability for a self-

stabilizing system is defined as the probability that the sys-

tem satisfies its safety predicate at time instant k without

ever violating it in time period [0, k]. Instantaneous avail-

ability of a self-stabilizing system at time instant k is de-

fined as the probability that the safety predicate holds pro-

vided it was satisfied at time instant 0. In contrast to the

definition of reliability, the definition of availability allows

the system to be perturbed by intermittent bursts of fail-

ures during system lifetime. The notions of reliability and

availability for the self-stabilizing systems are based on the

assumption that a self-stabilizing system is in “up-phase”

when it satisfies its safety predicate. It is trivial to infer

from the definition of self-stabilizing systems that they do

not have predefined initial states. An implication of this

property is that the set of possible initial states is equal to

the complete state space of the system, which is, in most

general case, a denumerably infinite set. Hence, the calcu-

lation of the dependability measures becomes intractable as

all the transitions must be accounted for during the anal-

ysis. This problem is circumvented in [7] by partitioning

the state space of the algorithm using a method similar to

predicate abstraction [11]. The state space of the algo-

rithm is partitioned into configuration classes where each

configuration class is characterized by a predicate over the

global state of the algorithm. Such partitioning of the state

space implies that for the silent self-stabilizing algorithms

the set of safe states is represented by a single configura-

tion class. The global predicate can in turn be composed

of local predicates defined over each process executing the

algorithm. For locally-checkable self-stabilizing algorithms

[4] with n processes, this method leads to an abstract state

space of 2n configuration classes. Unlike the definition of

execution used in literature [9], the notion of observed ex-

ecution is used during the analysis. An observed execu-

tion allows manifestation of a transient fault as a fault step

along with the transitions due to computation by a process,

called computation steps, in the system. In order to deter-

mine the probabilities of transitions between different con-

figuration classes, each sub-algorithm class of a distributed
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algorithm is analyzed. The probability that a transition takes

a generic process from a state satisfying the local predicate

P1 to a state satisfying the local predicate P2, is determined

for each pair of local predicates. Serialized execution se-

mantics is assumed during this phase of the analysis and

the scheduler is modeled via a tuple of probabilities. A

Markov chain characterizing the abstracted system is then

constructed with help of the probabilities derived as de-

scribed. The matrix representing the Markov chain is next

transformed to account for fault steps caused by the tran-

sient faults. The resultant Markov chain is used to deter-

mine the desired fault tolerance measures. If required please

refer to [7] for a detailed description of the analytic method.

Although the abstraction technique used in the analysis al-

leviates the state space management problem, it leads to in-

accuracy in the measures obtained. The accuracy of the re-

sults can be improved by increasing the granularity of the

partitioning, however it makes the analysis computationally

demanding. In addition to that, the analysis also assumes

pessimistic error propagation in the system. It implies that,

irrespective of the fact whether a value read by a process is

used in computation or not, a process reading an erroneous

value itself is considered erroneous. This, in turn, implies

that the values of the fault tolerance measures derived rep-

resent lower bounds. Additionally, the analysis method is

not directly suited for the self-stabilizing algorithms whose

safety condition can not be expressed as state predicate. Un-

fortunately, the analysis still does not scale well because the

number of nodes in the Markov chain increases exponen-

tially with the number of processes in the system.

2.3 Specification of the Simulator

In the light of the limitations of the dependability anal-

ysis discussed above, the quest for a simulation framework

becomes apparent where the values of the fault tolerance

measures of a self-stabilizing algorithm under a given exe-

cution environment can be evaluated for substantially larger

applications and a larger class of of application scenar-

ios. As the algorithm is executed as such, an inaccuracy

introduced by the abstraction techniques would not affect

the values of the fault tolerance measures. Furthermore,

the simulator should be able to determine the fault toler-

ance measures for the whole class of self-stabilizing dis-

tributed algorithms. An implication of this requirement is

that the developer should be able to specify customized

global predicate-checkers. In order to cope with systems

having a large number of processes, the simulator should be

able to run simulations in a distributed manner if required.

This also implies that subsets of potentially spatially sep-

arated processes may be combined to still share one com-

mon machine for simulation while other subsets are inter-

connected on other machines.

Generally, serialized semantics is used while proving the

correctness of the algorithm whereas overlapped seman-

tics is used to study its behavior in an implementation,

though the property may not hold under altered semantics

[3]. However, some distributed algorithms exhibit the self-

stabilization property independent of the underlying seman-

tics. Thus, the simulation framework should be able to sim-

ulate the algorithm under any one of the execution seman-

tics.

Regarding prospectus needs in fault model driven model

checking, a facility to incorporate environmental sources of

defect, disregarding the underlying fault model depending

on the system, is also required for future analysis.

Hence, the simulator has to be built as a framework to eas-

ily adapt future algorithms, system models, fault models,

schedulers, execution semantics and environmental influ-

ences; notably, probabilistic assumptions defined for one

system are not required to be static but may also be dynamic

and prone to some algorithmic behavior.

2.4 Related work

We now review existing distributed algorithm simulators in

the light of the requirements outlined above.

The Distributed Algorithms Platform (DAP) [5] provides an

environment for simulation and testing of distributed algo-

rithms. It also provides a graphical user interface for visu-

alizing and controlling the execution of algorithms. DAP

implements each simulated process as a separate operating

system process and thus offers the possibility of running

simulations in a distributed manner. The modular architec-

ture of DAP allows to abstract away details such as the com-

munication infrastructure in the “topology layer.” However,

it is not possible to add customized “observers” to check

whether the simulated algorithm satisfies a particular pred-

icate. In addition, it does not provide functionality to sim-

ulate a distributed algorithm under different execution se-

mantics.

SimUTC [21] is a C++SIM-based toolkit for the simula-

tion of fault-tolerant distributed systems. SimUTC is used

to simulate round-based clock synchronization algorithms

for distributed systems. The framework primarily consist

of three modules, namely, Controller, EvalSys and

Network. The Controller module, as the name im-

plies, is the “lynch pin” of the framework and controls the

simulation. EvalSys is the GUI which acts as front-end

of the Controller and performs data analysis. The un-

derlying communication infrastructure is abstracted by the

Network module. All the modules manifest themselves

as separate processes in the C++SIM framework and the

simulation is run on a single workstation. SimUTC is able

to simulate clock synchronization algorithms, which form

a very specific class of distributed algorithms. Also, it is

not feasible to simulate distributed algorithms employing a

large number of nodes because distributed simulation is not

possible.

A framework for the simulation of distributed algorithms

built upon OPNET [13] and Xplot has been presented in

[15]. OPNET acts as the simulation engine and Xplot is

used to provide graphical output. The three layer modeling

3



hierarchy of OPNET is used to specify the algorithm and

the execution environment to be simulated. The “network

domain” is used to specify the network topology and the

“node domain” describes the architecture of the individual

nodes. The distributed algorithm itself is presented to the

“process domain” as a finite state machine. But this simula-

tion framework also suffers from the lack of scalability and

the functionality to simulate customized execution seman-

tics.

LYDIAN is a framework for simulation and visualization

of distributed algorithms primarily used for education pur-

poses [16]. LYDIAN uses an entity called “experiment” to

specify the distributed algorithm and the execution environ-

ment. An experiment comprises of a “protocol” to be sim-

ulated, associated with a “network structure” and a “trace

file.” The algorithm is specified in a language with C-like

constructs. However, as the target group is students, this

simulator does not provide functionality to determine fault

tolerant measures of the simulated algorithm.

While the simulators and frameworks mentioned above all

feature some graphical user interface to prepare the col-

lected data, they lack in functionality required. As it is obvi-

ous, none of the available distributed algorithm simulators

satisfies the requirements outlined. We set out to develop a

simulation framework tailored to our needs. In the follow-

ing section, we explain the architecture and functionality of

the result.

3 The Simulation Framework SiSSDA

We will now explain the modular architecture of SiSSDA

followed by the functionality offered by it. We also elabo-

rate on the format in which information about the algorithm

and the fault environment is provided to the simulator.

3.1 Architecture of the Simulator

The basic layout is shown in Figure 1. SiSSDA is designed

to run in both, distributed as well as emulated distributed en-

vironments. It is implemented in the purely functional lan-

guage Erlang [2] that supports embedding of foreign pro-

gramming languages. The target user of the simulation

server

scheduler monitor

safety predicatesfault environment

client 1

...

client n

accuracy guard

Figure 1. SiSSDA architecture

framework is a self-stabilizing systems designer. SiSSDA

follows a modular approach as this offers a high degree of

flexibility to the user. It primarily consists of four modules:

server, fault injector, client and fault environment. We next

explain the functions of the first three modules while the

latter is discussed in Section 3.2 as it is more complex.

Server Module The server is the backbone of the sim-

ulation framework and controls the entire simulation. It

chooses the processes to be activated in each execution

step by incorporating an interface to choose between sev-

eral schedulers. A single process or a subset of processes

may be enabled by the server depending on the semantics

specified by the user and the scheduler employed.

In order to determine whether the safety predicate of a self-

stabilizing algorithm is satisfied or not, the local state of ev-

ery simulated process is collected after each execution step.

E.g., if a process is granted one execution step by the sched-

uler it might be perturbed by the fault injector. To determine

the global system state, each process reports it’s local state

to the monitoring server module that calculated whether the

global safety predicate is satisfied or not.

The server module also provides two possibilities to define

a stop criteria: (1) the user can define the exact number of

steps to be executed or (2) define accuracy guards that stop

the simulation autonomously as soon as a certain bound of

accuracy has been reached. These accuracy guards are fur-

ther discussed in Section 3.2.

Fault Injector The task of simulating the encompassing

implementation scenario is entrusted to the fault injector.

The fault injector is, despite some schedulers, the only mod-

ule that uses a random number generator.

During a simulation, the behavior of the fault injector is

specified by the desired fault environment (see Section 3.2).

The fault injector waits for the signal from the enabled pro-

cesses, i.e. from processes that were granted an execution

step, and then, depending on the fault environment, decides

whether the enabled process should be perturbed or not. If

a process is chosen to be corrupted, the fault injector writes

an erroneous value to a subset of it’s memory register. Note

that the values written by the fault injector may be equal

to the process’ current local state (then acting like a benign

fault).

Client Module The client module implements the dis-

tributed algorithm under investigation. It can be run on a

single or on multiple workstations depending upon the num-

ber of processes and the structure of the system model to

be simulated. The mapping of a client module to a sub-

algorithm is done by the server module based on the con-

figuration file during the initialization phase. By default, a

client is always in “listening” mode and it becomes active

when it receives an enabling signal from the server. An en-

abled, non-fault-injected client reads the states of its neigh-

bors and computes its own local state based on the values

read. Perturbed nodes are directly provided an erroneous

value which is used during calculation of the current state.

Each node stores the derived own value as well as the val-

ues provided by each neighbor. Depending on the definition
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of the local safety predicates, two functionalities are imple-

mented in SiSSDA: (1) states of neighboring nodes (stored

in memory cells) are disregarded and a node satisfies the lo-

cal safety predicate if the correct value is derived, or (2) not

only the current state, but also all neighbors’ states (in mem-

ory cells) are accounted for calculation of predicate satis-

faction. The latter case is more pessimistic as errors might

persist even if every node could derive its correct state.

3.2 Features of SiSSDA

SiSSDA can be adapted to provide certain fault tolerance

measures for all classes of self-stabilizing algorithms un-

der various fault environments and precision of the obtained

measures can be controlled by the user. These classes also

cover self-stabilizing systems that are beyond the analysis

for feasibility reasons. In the sequel, we describe SiSSDA

functionalities and capabilities in more detail.

Fault Environment and Fault Model In order to provide

a high granularity in possible errors, faults belong to one of

two classes. In the fault model, errors occurring during ex-

ecution due to prescribed behavior (like failed communica-

tion or erroneous components) are described. Whether such

an error occurs is determined a priori, i.e. before execu-

tion of a step. Such an error perturbs the execution step and

might corrupt the system state.

On the other hand, environmental influences like tempera-

ture, lighting or external feedback components might also

influence the system without being influenced by the sys-

tem. Using the data structure, these faults are applied a

postiori, i.e., they affect the system state after execution of

a step, and are accordingly independent of the fault model.

These environmental faults are called fault environment (in

contrast to the fault model). The fault environment, as

previously mentioned in Section 3.1, is not only able to

corrupt the system state, but for future investigation, re-

garding for example the scheduling behavior, it can also

change the scheduling behavior, the degree of parallelism,

the whole system structure, error probabilities and the algo-

rithm applied. The measures observed as well as the accu-

racy guards, as discussed below, are not prone to the fault

environment. Notably, the fault environment is a feature of

SiSSDA that was not used during this work as it was neither

used in the analytic method.

The simulator can be used to model various concrete fault

environment scenarios with the help of the error probability

distributions. SiSSDA offers functionality to specify error

probabilities for the links and the nodes in the simulated

systems. It is also possible to simulate entities with time-

variant error probability distributions. For instance, the

time-variant error probability distributions for both, links

and nodes, can be used to simulate a wireless sensor net-

work. One can also provide a different error probability

distribution for each entity to simulate heterogeneous net-

works.

Even though real systems might require the consideration

of such (dynamic) effects, in our cause, to be as close as

possible to the analytic approach for comparison reasons,

we used a static fault model and set the fault environment to

neutral behavior.

Execution Semantics The size of the subset of processes

enabled by the server in each execution step is specified by

the user. Thus, SiSSDA can simulate the algorithms under a

wide variety of execution semantics varying from serialized

semantics on one end of the spectrum to maximum paral-

lelism semantics on the other hand. In addition, simulations

can also be run under a probabilistic scheduler where the

user specifies the probability of a process being enabled in

an execution step for each process in the system. This fea-

ture can be harnessed to run simulations even under an un-

fair daemon. Furthermore, accumulating effects can be ac-

commodated as schedulers might disregard nodes, e.g. due

to some specified hardware wearout.

Accuracy Guard The precision of the fault tolerance

measures calculated by SiSSDA can be controlled with help

of accuracy guards. An accuracy guard primarily specifies

the number of digits past the decimal point to which a fault

tolerance measure must “stabilize” before it can be reported

as the result of a simulation. An accuracy guard is defined

by (1) the minimum number of execution steps, (2) the last

n calculations of the desired fault tolerance measure, and

(3) the maximum acceptable deviation within the set of the

last n results. An accuracy guard is “active” when all three

conditions are satisfied. Clearly, a stricter accuracy guard

leads to longer simulation times while on the other hand

a weaker accuracy guard ensures that the simulation ends

sooner. However, in the latter case the accuracy of the re-

sult obtained may not be too high. Another observation is

that same accuracy guards might return results of different

accuracy for different scenarios. We conducted some exper-

iments to see the validity of these observations. We simu-

lated the self-stabilizing mutual exclusion algorithm [8] for

an eight-process topology (cf. Figure 2) and monitored its

limiting availability for the first 20, 000 steps. The fault en-

vironment and the fault model featured the same fault prob-

ability for all the nodes with no further side effects like par-

allel execution semantics or change of the scheduler. The

result of the simulation is shown in Figure 3. It is easy to see

that the variation of availability decreases with the length of

the simulation run. We simulated the self-stabilizing mutual

exclusion algorithm under two different accuracy guards to

show the necessity of a sufficient strictness of the accuracy

guards applied. Figure 4 shows the values obtained dur-

ing these experiments. While for sufficiently strict accuracy

guards, the fault tolerance measure observed (namely avail-

ability) decreases exponentially with an increase of error

probability, the values obtained for weak accuracy guards

are not accurate enough. Hence, the graph marked by the

squares shows an unsteady progress.
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Figure 2. An eight-process topology
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Figure 3. Limiting availability measured in the
course of the first 20.000 steps
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Figure 4. Results determined depends on
strictness of accuracy guards employed

Monitoring Simulation In some cases, it might be im-

portant to trace the simulation. SiSSDA provides a logging

facility such that the execution trace can be analyzed after

the end of the simulation. This feature is particularly use-

ful when one is interested in identifying those illegal states

which are attained frequently and this knowledge can fur-

ther be used to re-engineer the system in order to increase

some critical dependability measures. In addition, SiSSDA

can also be run in verbose mode which is interesting from

the instructional point of view.

Input Specification A scenario is specified in a configu-

ration file which is read by the server module at the begin-

ning of a simulation. A scenario specifies the distributed

algorithm to be simulated along with the desired simulation

environment. It is composed of four parameters. The first

parameter links the algorithm which is to be simulated. The

second parameter specifies the topology according to which

the processes communicate. The third parameter specifies

the accuracy guard or the number of steps to be executed,

respectively. The error probability distribution is given by

the fourth parameter. The distributed algorithm is provided

through external Erlang modules which are specified in the

configuration file.

A detailed description is given in the SiSSDA manual [18]

where class diagrams, additional functionalities and ideas

for further extension are also presented.

4 Application of the SiSSDA

In this section, we present the results of experiments carried

out with SiSSDA. In order to compare the results of the sim-

ulations with the analytic approach of [7], we set up exactly

the same scenarios for both, simulation and analysis.

For the scenarios, we chose two variants of self-stabilizing

spanning tree distributed algorithms along with a set of

eleven different topologies. Although the algorithm itself

is rather simple, it forms the core of link management

protocols and, thus, is critical for smooth network opera-

tions [20]. Each topology consists only of one distinct and

three common nodes and bidirectional communication links

modeled via communication registers. As shown in Figure

5 there are exactly eleven topologies that meet these con-

ditions. To show the advantages of the simulator, we also

1

2

3

4

5

6

7

8

9

10

11

Figure 5. Eleven four-process topologies
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chose a scenario with an eight-process topology, that is in-

feasible for the analytical approach. To show the scalability

of the simulation framework, we further analyzed the run-

time behavior within a distributed environment depending

on the number of nodes equally distributed on a different

number of machines. This comparison is discussed in Sec-

tion 4.3. The fault-tolerance measure we chose to observe is

limiting availability. We describe the algorithms in the next

section.

4.1 Case Studies

As explained in the introduction, one of the primary goals

for deriving the fault tolerance measures is to compare dif-

ferent self-stabilizing solutions to the same problem. To-

wards that end, we chose two versions of the solution for

the self-stabilizing spanning tree problem. We compared

the breadth-first search (BFS) spanning tree algorithm of

[9] and depth-first search (DFS) spanning tree algorithm of

[6].

do1

true → write(path1 := ⊥)2

od3

Figure 6. DFS sub-algorithm for the root
process p1, from [6].

do1

j 6∈ {0, . . . , δ} → j :=2

random value in {0, . . . , δ}
j ∈ {0, . . . , δ} →3

do4

j ∈ {0, . . . , δ − 1} → j :=5

j + 1; read(read pathj := pathαi(j))

j = δ → j := 0; write(pathi :=6

min{|read pathl ◦ αi(l)|N , 1 ≤ l ≤ δ})
od7

od8

Figure 7. DFS sub-algorithm for a non-root
process pi, i > 0, from [6]

The DFS spanning tree algorithm (see Figures 6 and 7)

builds the rooted DFS tree of a graph in self-stabilizing

manner. The graph consists of a special node called root

node and all other nodes are called non-root nodes. Every

node has a local variable called path which encodes the re-

sultant tree. A path is a sequence of node ids starting with

“⊥.” For each node pi, the variable pathi encodes the path

from pi to the root node. The root node always assigns “⊥”

to its pathi variable. All other nodes 1) read the path vari-

able of all their neighbors, 2) concatenate their own id to

the shortest path variable, and 3) assign the concatenated

shortest path variable to their path variable. The system is

in a safe state if and if only all the path variables contain the

shortest path to the root node.

do1

m 6∈ {0, . . . , δ} → m := random value in2

{0, . . . , δ − 1}
m ∈ {0, . . . , δ − 1} → m :=3

m + 1; write(r1m := (0, 0))
m = δ → m := 04

od5

Figure 8. BFS sub-algorithm for the root
process p0, from [9]

The BFS spanning tree algorithm (see Figures 8 and 9),

likewise, builds the rooted BFS tree of a graph with a root

node and multiple non-root nodes. Each process has a dis-

tance variable which contains the minimum distance from

the root node to that node. In addition, each process owns

communication registers which consist of two fields: 1) a

distance field and 2) a parent field. The distance field of

each communication register contains a copy of its own dis-

tance variable. The parent field is set to 1 for the commu-

nication register representing the link between a node and

its parent. The root repeatedly writes 0 to both fields of its

communication registers. Each non-root node 1) chooses

the minimum of the distance variables of its neighbors, 2)

increments it by 1, and 3) assigns it to its own distance vari-

able. It then 4) copies this value to all its communication

registers and 5) the parent field of the communication regis-

ter representing the link to the neighbor with least distance

variable is set to 1.

Both, analysis and simulation, were done with a static fault

environment. The fault tolerance measures have been de-

rived under serialized semantics as both algorithms are self-

stabilizing under these semantics [9]. We also used uniform

error probability with respect to the processes in the sys-

tem implying that all the nodes were equally vulnerable to

faults. This is referred to as global node error probability

(GNEP) in the following. We next describe the set-up of the

simulations for the scenarios described above.

4.2 Running the Simulations

Running the simulator consists of three steps. (1) Change

the scenario by editing the file global config.hrl as de-

scribed in the enclosed README of [18], i.e., set the al-

gorithm to be simulated, the topology, the GNEP and the

hostnames as required. To keep compiling times low it

is advised to prune such included topologies that will not

be simulated. (2) The source code needs to be compiled

with erlc *.erl from the shell. (3) Start one shell in server

mode. After starting another shell as fault injector, simu-

lation commences until it gets interrupted by the user or it

reaches the accuracy guards (cf. Section 3.2).
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do1

l 6∈ {1, 2} ∨ m 6∈ {0, . . . , δ} → l := random2

value in {1, 2}; m := random value in

{0, . . . , δ − 1}
l ∈ {1, 2} ∧ m ∈ {0, . . . , δ} →3

do4

l = 1 ∧ m ∈ {0, . . . , δ − 1} → m :=5

m + 1; lrmi := read(rαi(m)i)

l = 1 ∧ m = δ → l := 2; m :=6

0; FirstFound := false

l = 2 ∧ m ∈ {0, . . . , δ − 1} →7

m := m + 1; dist =8

1 + min{lrli.dis | 1 ≤ l ≤ δ}
if9

¬FirstFound ∧ lrmi.dis =10

dist − 1 → FirstFound :=
true; write(riαi(m) :=
(1, dist))
FirstFound ∨ lrmi.dis 6= dist −11

1 → write(riαi(m) := (0, dist))

fi12

13

l = 2 ∧ m = δ → l := 1; m := 014

od15

od16

Figure 9. BFS sub-algorithm for a non-root
process pi, i > 0, from [9]

The version of the simulator supplied is designed to run

in a multi-processor environment. It will automatically ac-

quire spare resources. Client processes are automatically

created by the server node.

4.3 Results

The GNEP was varied from 0.00 to 0.40 via incremental

steps of 0.05. The GNEP was not increased beyond 0.40
because the limiting availability converges to 0 and does

not change much after a GNEP of 0.40. Figures 10 and 11

show the variation of availability with respect to the GNEP

for the analytical approach. The variation of limiting avail-

ability determined by the simulations is shown in Figures

12 and 13. The deviation of limiting availability for a sin-

gle scenario across ten experiments was sufficiently small

as shown in Figures 14, 15 and 16. Each simulation was

run for one million execution steps which is sufficient as

discussed at the end of this section. The decrease of

limiting availability follows an exponential pattern for both,

the analysis and the simulation. Also, the DFS spanning

tree algorithm outperforms the BFS spanning tree algorithm

by both methods. This can be attributed to the fact that the

BFS spanning tree algorithm uses a far larger number of
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Figure 10. BFS analysis results
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Figure 11. DFS analysis results
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Figure 12. BFS simulation results
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Figure 13. DFS simulation results

��� ��� ��� ��� ��� ��� ��	 ��
 ��� ���� 
��
��	��

��	��

��	��

��	��

��	�


��	��

��	��

��	��

������������������������������ !"�#��"��$�������������"%&#%'#���()%")�&��������	�

����')*�&"�+

,
�
%
$
!
'�
#
�-
)*

)"
)&
�
�

(
%
)�
%
.
)�
)"
�

Figure 14. Reliability of results with GNEP
0.05
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Figure 15. Reliability of results with GNEP 0.5
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Figure 16. Reliability of results with dynamic
GNEP

variables than the DFS algorithm, namely the memory reg-

isters, and thus all these variables must be in a correct state

such that the safety predicate is satisfied. The variation of

limiting availability among different topologies for the same

value of GNEP can be attributed to the connectivity of the

respective topology. The more connected the topology is,

the higher is the impact of error propagation. The limiting

availability derived by analysis method is bounded by num-

ber of configuration classes used to construct the respective

Markov chain. Thus, for a four-process system it is bounded

by 0.125 as shown in the plots. The limiting availability de-

rived analytically approaches the value derived during sim-

ulation if the number of configuration classes is increased.

However, this makes the analytic method extremely compu-

tationally demanding.

We also simulated both self-stabilizing spanning tree algo-

rithms on an eight processes system topology (see Figure

2) to gauge the scalability of SiSSDA. Figure 17 shows the

result of the simulations for this system. In order to further
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Figure 17. Simulation of an eight-process
topology

test the scalability of the simulator, we ran simulated algo-

rithms on topologies with large numbers of nodes. We sim-
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ulated the self-stabilizing BFS algorithm on random graphs

with 64, 128, 256, 512 and 1024 nodes. It is advised to run

each client, server and fault injector application on a differ-

ent machine if the number of simulated processes is above

a certain threshold. For instance, during our experiments

a machine with 1GB of main memory could not simulate

a topology with more than 256 nodes, on the other hand a

topology with 1024 nodes was handled by a machine with

4GB memory.

All the simulations were executed on both, a single system

and multiple systems, and time required to meet the accu-

racy guards for each scenario was compared. The time re-

quired for the simulation is proportional to the size of the

topology. If the simulator is run over local network, overall

computation time increases considerably because computa-

tion time is small in comparison with message passing time.

Nevertheless, it is advantageous to run the simulator in dis-

tributed fashion in order to simulate very large topologies.

Thus, the number of nodes that can be simulated can be ar-

bitrarily large modulo the number of systems available for

simulation. Also, running time decreases linearly for com-

putationally demanding algorithms.

As shown in Figures 14 and 15, results can be reproduced

with a sufficient accuracy regardless of the GNEP applied.

Since accuracy margins are relative to the GNEP, variance

in results is negligible.

5 Conclusion

We presented a simulation framework to determine fault
tolerance measures for self-stabilizing algorithms to over-
come the limitations of the currently available analytic
method. SiSSDA is able to calculate the fault tolerance
measures for self-stabilizing systems under various imple-
mentation scenarios. SiSSDA has a modular design which
provides flexibility with respect to the specification of algo-
rithms. We explained constituting modules of SiSSDA and
described their functionalities. The results of simulations
for two self-stabilizing algorithms under similar assump-
tions were compared to corresponding results of the anal-
ysis and it has been shown that fault tolerance measures de-
rived by simulation were comparable to that of the analysis
procedure. We further showed the capabilities of SiSSDA
which go beyond the capabilities of the analysis procedure.
SiSSDA is able to derive fault tolerance measures for self-
stabilizing systems using a considerably larger number of
processes. It is able to simulate self-stabilizing algorithms
which the analytic method is currently not able to handle.
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