
Combining Decomposition and Lumping to
Evaluate Semi-hierarchical Systems

Nils Müllner, Oliver Theel and Martin Fränzle
Carl von Ossietzky University of Oldenburg, Germany, and

OFFIS Institute for Computer Science
Email: nils.muellner|theel|fraenzle@informatik.uni-oldenburg.de

Abstract—Determining performance and fault tolerance prop-
erties of distributed systems is a challenging task. One common
approach to quantify such properties is to construct the state
space and a transition model of the distributed system that is to be
evaluated. The challenge lies in the state space being exponentially
large in the size of the system. One popular approach to tackle this
challenge is to combine decomposition and lumping. The system is
decomposed, transition models of the subsystems are constructed
and minimized by lumping bisimilar states under an equivalence
relation, and the intermediate marginal transition systems are
composed to construct the minimal aggregate transition model.
The approach allows to circumvent the necessity to construct
a full transition model while preserving the ability to compute
precise measures. The decomposition yet hinges on the structure
of the communication within the system. When processes do not
influence each other, decomposition is trivial as it is arbitrary.
On the contrary, when all processes are influenced by all other
processes — known as heterarchical structure — systems cannot
be decomposed at all. Between systems of independent and
heterarchical processes are i) hierarchically structured systems
and ii) systems that are globally hierarchical, but contain lo-
cally heterarchical subsystems. The hierarchical type has been
addressed elsewhere. This paper targets the second type —
referred to as semi-hierarchically structured —, thus expanding
the frontier from decomposing purely hierarchically structured
systems to decomposing semi-hierarchically structured systems.
Furthermore, this paper points out the role of different types of
execution semantics regarding the decomposition.

I. INTRODUCTION

The scope of this paper is the evaluation of system
properties like fault tolerance and performance properties.
We consider deterministic systems that are exposed to and
influenced by probabilistic environments to determine, how
well they operate within that environment. More specifically,
we focus on systems that can recuperate from the effects of
sporadic faults. The measure of interest in this concern is
the convergence rate, that is, the probability flow from illegal
towards legal states in the state space. The problem is that
the number of states in the state space is exponential in the
number of processes of the underlying system. One method
to cope with this problem is to slice the system, construct
the transition models of the subsystems, and minimize the
subsystems by lumping bisimilar states under an equivalence
relation. Eventually, the lumped transition models of the sub-
systems are recomposed. Similar earlier approaches targeted
unstructured systems, in which processes do not influence each
other, and later, hierarchically structured systems, in which
the influence of one superior subsystem into another inferior
subsystem had to be accounted for in the transition models.

While unstructured systems commonly operate under maximal
parallel execution semantics — meaning that all processes that
can execute actually do execute —, hierarchical structured
systems have been discussed for serial execution semantics.
With such semantics, exactly one process is selected to execute
a computation step per time step. This paper proposes advances
in two directions. First, it includes heterarchical subsystems
to be regarded during the decomposition. Second, it provides
a discussion regarding semi-parallel execution semantics and
how it affects the decomposition.

a) Related work: This paper continues our previous
approach [1, 2] by i) extending the method to further account
for semi-hierarchically structured systems and by ii) discussing
different types of execution semantics despite serial and max-
imal parallel execution semantics. A small example points out
the issues arising with these extensions and how they can be
tackled.

Markov chains, as introduced by Kemeny and Snell in
1969 [3],1 can be lumped to reduce the state space. Lumping
is a well-known technique of coalescing states under an
equivalence relation, based on the definition of probabilistic
bisimulation by Larsen and Skou from 1989 [4], presented by
Buchholz in 1994 [5]. It allows to speed up model checking
as discussed by Katoen et al. in 2007 [6] and is implemented
in popular tools like the Caesar/Aldebaraan Development
Package (CADP) [7] to carry out formal verification and
performance analysis with the non-stochastic process algebra
LOTOS [8].

Classifying distributed systems into independent, hierarchi-
cal, semi-hierarchical and heterarchical ones regarding their
decomposability is proposed in our previous work [1]. De-
composition of independent systems — with the intention to
apply lumping on the transition models of the subsystems
— is discussed under various angles by Boudali et al. [9,
10, 11, 12, 13, 14] for independent processes. Hermanns and
Katoen further contribute a case study regarding a plain old
telephone system [15] in that context. Contrary to systems
comprising independent processes, hierarchically structured
systems are intrinsically more challenging to decompose as
the influence that one subsystem has on another subsystem
must be accounted for.

The decomposition of semi-hierarchically structured sys-
tems proposed in this paper exploits lumping and system
decomposition as discussed for systems of independent and

1We refer to revised version from 1976.

hierarchically structured processes before. The main contribu-
tion is to expand this concept to cover for semi-hierarchically
structured systems, too. A major challenge that is attacked in
this paper and has not surfaced for systems of independent and
hierarchical processes concerns execution semantics.

b) Structure: The paper is organized as follows.
Section II presents the system model and its conversion to
a transition model. Section III explains how the aggregate
transition model is constructed and applied to quantify the
risk of blackouts. Section IV provides a brief example to
demonstrate the practical value of the approach. Section V
concludes the paper.

II. MODEL

As setup we consider a system providing deterministic
execution dynamics and probabilistic environmental influence.
The deterministic part is specified first. Consider a distributed
system S = {Π, E,A} comprising a set of processes Π =
{π1, . . . , πn} with each process πi having a register Ri of
volatile memory storing data that is prone to sporadic faults2.
The set E defines unilateral neighboring relations between the
processes. It contains tuples of processes E = {〈π1, πi〉, . . .}
such that the second process of a tuple has read access
from the first process. The algorithm A specifies what the
processes execute. It is considered to be stored in non-volatile
memory, thus being immune to sporadic faults. To focus on the
decomposition-and-lumping method, we consider a determin-
istic algorithm. A deterministic algorithm can be formulated
as set of guarded commands for which — for each state —
exactly one guard evaluates to true.

Each register has a domain: a set of values it can possibly
store. The state space S contains all combinations of possible
values stored in the registers. A state s ∈ S contains the values
allocated to the registers of all the processes. Consider each
process to have exactly one register. Then, the length of each
state coincides with the number of processes n. The cardinality
of the state space, which is the number of possible states, is
labeled |S|. For instance, a system with two processes π1 and
π2 each containing one register with cardinality |R1| = |R2| =
3 has a state space of cardinality |S| = |R1| · |R2| = 9.

We now specify the entities of the probabilistic environ-
ment. A probabilistic scheduler selects processes to execute an
atomic execution step, which is one atomic guarded command
of the algorithm. A scheduler is probabilistic in the context
of this approach if at each time step each process has a
non-zero probability to be selected. Hence, a process can
possibly be continuously barred from execution. The execution
semantics determine the parallelism of the execution. Under
serial execution semantics, at each time step one process is
selected to execute one computation step, that is, one guarded
command of its algorithm. Under maximal parallel execution
semantics, all processes for which at least one guard evaluates
to true, execute. With deterministic algorithms, every process
executes at every time step under maximal parallel execution
semantics. When execution steps are synchronized among
the processes under maximal parallel execution semantics,

2We consider the algorithm to be stored safely in non-volatile memory.
Faults occurring during the transmission and communication phase can be
accounted to the probability of a process register storing a faulty value.

the scheduler is redundant. Semi-parallel execution semantics
admit more than one, but not all n processes to execute an
atomic step in parallel. The second part of the probabilistic
environment subsumes transient sporadic faults. In our fault
model, the perturbed process stores an arbitrary value from
the domain of the affected register in that register. We consider
that only the executing process is exposed to transient faults.

A state-based safety predicate P is a Boolean expression
partitioning the state space into legal states Slegal and illegal
states Sillegal . As discussed in the previous section, the clas-
sification of systems into

• unstructured (no dependencies among the processes),

• hierarchically structured (one-way dependencies
among the processes, no circular dependencies),

• semi-hierarchically structured (globally one-way de-
pendencies among the sub-systems with local mutual
dependencies) and

• heterarchically structured (fully meshed dependencies)

is important. When processes (or subsystems) do not influence
each other mutually and are running in parallel, they can be
evaluated individually. Since each process executes at each
time step and is probably perturbed by a fault, the system
can reach every state from every other state. This means,
that at most n registers can change per time step, considering
every process has exactly one register as discussed above. The
number of registers that can change in parallel per time step
is referred to as the Hamming distance, which is n in this
case. This holds analogously true for all systems executing
under maximal parallel execution semantics. On the contrary,
consider a system under serial execution semantics. When only
one process executes per time step and all other processes are
immune to faults and every process contains one register, then
the Hamming distance is 1.

Hazards occur when processes executing in parallel read
each others’ registers in the wrong order. To exclude hazards
from our approach, we consider all executing processes at each
time step to first read each others’ registers and to write to their
own register after all processes finished reading. This can for
instance be accomplished with a mutual exclusion function that
allows processes to enter the storing phase only when all other
processes acknowledged they have left the reading phase. For
simplicity, we do not consider this as given.

III. METHOD

This section informally describes the general approach. A
semi-hierarchically structured system is decomposed such that

• each subsystem is tractable,

• subsystems overlap in as few processes as possible,

• processes with the same distance to the root process
are within the same subsystems if possible, and

• heterarchical processes are within the same subsys-
tems.

This implies that the approach does not work for systems con-
taining intractably large heterarchical subsystems. Let j, 1 <

j < n be the number of processes that the scheduler selects
to execute a computation step at each time step in parallel.
Let k be the minimum of the number of processes within a
subsystem Si and j: k = min(|Si|, j). For each subsystem
and each l, 0 ≤ l ≤ k one transition model has to be
constructed, for the case that no process within a subsystem
is selected to execute, up to the case in which all processes
that can maximally execute within a subsystem are selected
to execute. Subsequently, all transition models are lumped
and then composed as follows: Considering the execution
semantics, each case of process selection is combined via
the transition models applying the Kronecker product for
parallel composition, thus, constructing each possible case
of scheduling selection as transition model. Finally, all case
transition models are composed, again applying the Kronecker
product. The example in the following section figuratively
demonstrates and explains the approach.

IV. EXAMPLE

The example introduced in this section comprises mutually
independent components that are semi-hierarchically struc-
tured locally. We focus on evaluating just one component, as
the counting abstraction for independent components is well-
known as discussed in the introduction.

A. The setup

This section describes how a real world system is mapped
onto the theoretical system description. A greater plain, like a
desert or a vineyard [16], is covered evenly with small local
networks such as depicted in Figure 1. Each sensor mote —
modeled as one of five processes π1 to π5 — in such a local
wireless sensor network (WSN) measures either humidity or
temperature, exclusively one of them at a time. A radio station
broadcasts the type of value that shall be stored at that time.
To minimize costs, only one root sensor mote is equipped
with a radio receiver. This distinguished root sensor mote π1
propagates the type to be recorded to the remaining motes.

Each process contains both sensors (for temperature and
humidity) and enough memory to store measured data for the
duration of the desired mission time. The sensors can only
measure one type of data per time step. The root process
reads the broadcasted value and propagates it to all neighbor-
ing processes. The switch between measuring temperature or
humidity is arbitrary and modeled probabilistically. Consider
for instance an observer that wants to evaluate temperature and
humidity of a region. That observer can switch the type of data
to be recorded. With a probability pr switch they want the other
measure to be recorded and with probability 1−pr switch they
continue with the current value.

Process π1 is the root process and reads only the prob-
abilistic broadcast. The non-root processes behave similar to
the self-stabilizing broadcast algorithm (BASS) presented in
[1, 2] but without priorities. Processes π2 and π3 read from
π1 and from each other. Processes π4 and π5 read from both
π2 and π3. A central scheduler demon that is not shown in the
figure, probabilistically selects two processes per time step to
execute in parallel. Each computation step starts with a read
phase in which the executing processes inquire which type of
data is to be stored. Afterwards, they store the corresponding

measure. Forcing the processes to maintain a strict sequence of
reading and writing allows to exclude read-after-write hazards
as discussed by Patterson and Hennessy [17, 18]. For instance,
assume that π1 and π2 execute. Without a strict sequence, it is
undetermined whether first π1 updates according to the radio
broadcast and also updates π2 in the same step, or if first π2
inquires the old status of π1 before both processes write. A
strict sequence implies the latter constellation.

We abbreviate temperature with 0 and humidity with 2.
When a process cannot determine which type is intended —
that is, when there is no majority for one of the two types
—, it stores nothing to save memory, and propagates 1 until
it executes again. The fault model forces a process to store
0 when it should store 2 and vice versa. In case a process is
supposed to store 1 and is perturbed by a fault, the effect of
the fault is undetermined. We pessimistically assume that it
stores the currently inappropriate value that is not broadcasted
at that time to solve this non-determinism, thus computing the
lower bound.

With five processes and two processes executing in parallel
per time step, it requires at least five steps for every processes
to have executed. Hence, after a switch on the broadcast, the
system must execute at least three steps to propagate the new
type of data to be stored. The system thus cannot continuously
store the desired data in every process and every time step.
With pr switch ≥ 1

3 , meaning that a switch occurs in average
every three or less time steps, it is unlikely that — even
without transient faults — the consistency is very high, since
the mean switching interval is lower than the minimal time
required for convergence.

B. The goal

The goal is to determine the consistency of the measured
data in a given probabilistic environment. A set of data con-
tains the data stored by each process. That set is consistent if
it coincides with the broadcasted type at that time. The system
has not only to cope with transient faults propagating through
the system, but also with probabilistic switches. The system
probabilistically converges to the currently broadcasted type of
data and is thereby probabilistically self-stabilizing [19]. The
question ’What is the probability that each process stores the
desired type of data in each time step?’ determines the de-
sired fault tolerance property which concerns the consistency.
Furthermore, we consider that all processes initially store 0
and 0 is broadcasted in the first time step. Therefore, we are
interested in the instantaneous window availability (IWA) [20]
with window size 1 for each time step.

C. The motivation

This example allows to highlight important properties. The
first point concerns resolving non-determinism. In the fault
model, it is undetermined which value the perturbed process
stores when it is supposed to store 1. This example computes
the lower boundary to solve this non-determinism. The same
computation can be repeated with an optimistic assumption
— that is, storing the currently broadcasted value — leading
to the upper boundary. The upper and lower boundaries
demarcate the corridor of possible legal execution traces.

rootroot

rootroot

rootroot

root root

root root

root root

root
root

rootroot

root root

root rootroot root

root rootroot root

root rootroot root

root

broadcast

upper subsystem

lower subsystem

overlap

Figure 1. Wireless sensor network component

The second important point are semi-parallel execution
semantics. Previous work on hierarchically structured systems
[1, 2] introduced an adapted variant of the Kronecker product
to account for exclusively one of the subsystems one process
executed. Semi-parallel execution semantics — that is, not all
processes but more than one process can execute per time step
— are a special challenge as a case distinction is required that
is neither necessary for strict serial nor for maximal parallel
execution semantics. The present case study allows to address
this challenging issue.

Third, the system contains a heterarchical subsystem with
processes π2 and π3. The challenge here is to slice the system
through the heterarchical set.

This also allows to discuss the fourth challenge: Slicing
through multiple processes. This example allows to discuss
why slicing through multiple processes is not more complex
than slicing through one process as discussed in [1, 2]. The
slicing in this example further demonstrates that the processes
in subsystems — in this case π4 and π5 — need not even
necessarily be connected.

D. The input parameters

The input parameters contain

1) fault probabilities,
2) switching probabilities and
3) scheduling probabilities.

We consider the fault probability of an executing process
storing the wrong type of data to be q = 0.01 and the
switching probability to be pr switch = 0.03 for both switching
directions, from 0 to 2 and vice versa. The numerical values3

can be adapted as desired. The scheduler selects two processes
randomly with a uniform probability distribution.

E. The safety predicate

The system is in a safe state — that is, the data set being
recorded is consistent — when all processes record the value

3The source code is available at http://www.informatik.uni-oldenburg.de/
~phoenix/WSN.zip. The tables in the source code contain symbolic DTMCs
such that the input parameters can be easily adapted.

that is broadcasted at that time:

st |= P
{
st = 〈0, 0, 0, 0, 0〉 ∧ broadcasted value is 0

st = 〈2, 2, 2, 2, 2〉 ∧ broadcasted value is 2
(1)

The quantification method can easily be adapted such that
safety is also satisfied when not all, but only a subset of the
processes stores the broadcasted type of value.

F. The state spaces of the subsystems

The first process can store either 0 or 2 and all other pro-
cesses can derive 1 as well. Furthermore, the broadcasted value
determines whether st |= P and must be accounted for as well.
For instance, the system can be in state st = 〈0, 0, 0, 0, 0〉 when
0 is broadcasted, thus satisfying P , or it can be in the same
state when 2 is broadcasted, thus not satisfying P . The full
product transition model hence contains |S| = 2 · 2 · 34 = 324
states — that is, number of possibly broadcasted values times
the number of possible values in π1 times the number of
possible states to the power of processes these values are
being stored in — as pictured in Figure 2(a). Coalescing states
results in a state space of |S ′| = 2 · 2 · 6 · 6 = 144 states as
pictured in Figure 2(b).

broadcast

root

(a) Full state space

broadcast

root

(b) Lumped state space

Figure 2. State space reduction

http://www.informatik.uni-oldenburg.de/~phoenix/WSN.zip
http://www.informatik.uni-oldenburg.de/~phoenix/WSN.zip

G. The decomposition

The system is sliced in π2 and π3. The upper subsystem
comprises processes π1, π2 and π3, the lower subsystems π2,
π3, π4 and π5. Both subsystems overlap in the heterarchical
processes π2 and π3. The scheduler selects two processes. If
the two processes were to deterministically execute both within
the same subsystem, then the decomposition could be carried
out like for serial execution semantics. Here, two processes,
one in each subsystem, can execute in parallel. Therefore, each
case must be accounted for with its own transition matrix. The
first case is that both processes selected for execution belong
to the upper subsystem. The second case is that both selected
processes belong to the lower subsystem. The third case is that
one process belongs to each of the two subsystems.

We label the sub-Markov chain for the upper subsystem D1

and D2 for the lower subsystem. A second index is added la-
beling the case that no process in the corresponding subsystem
is selected D1,0, that one process is selected D1,1 or that both
selected processes are within the subsystem D1,2 (analogously
for D2). Figure 3 shows the decomposition schema. The upper
subsystem — being hierarchically superior — is tackled
first. The transition matrices describe what can happen in
one execution step with two processes executing simultane-
ously. The three probabilistic influences are switch, fault and
scheduler selection. The latter comprises the events s1,2, i.e.
the probability that processes π1 and π2 are selected, s1,3,
s1,4, s1,5, s2,3, s2,4, s2,5, s3,4, s3,5 and s4,5. With uniformly
distributed scheduling probabilities, each combination is likely
to be selected with a probability of 0.1. The probability that
exactly one process in the upper subsystem is selected, is hence
s1,4 + s1,5 + s2,4 + s2,5 + s3,4 + s3,5 = sboth = 0.6. The
probability that both selected processes belong to the upper
subsystem is s1,2 + s1,3 + s2,3 = 0.3 = sup. The probability
that none of them is selected, is s4,5 = 0.1 = slow.

For each case, the transition matrix is constructed. Next,
all three matrices D1,0, D1,1 and D1,2 are lumped to D′1,0,
D′1,1 and D′1,2, shown in Figure 4. The colors are encoded on
a standard MatLab spectrum from blue being 0 to red being
1 as shown in Figure 7. These matrices are required again
later. We label a lumped state with the doubly lined alphabet
according to the sum of the stored register values. For instance,
the lump of states 〈0, 2〉 and 〈2, 0〉 is labeled 〈2〉. Afterwards,
the three matrices D′1,0, D′1,1 and D′1,2 are added and D′π2,π3

is uncoupled. Both π4 and π5 store

• 0 when reading 〈0, 0〉 or 〈1〉, which is the lumped
state of states 〈0, 1〉 and 〈1, 0〉,

• 1 when reading 1, 1 or 〈2〉 which is the lumped state
of states 〈0, 2〉 and 〈2, 0〉, and

• 2 when reading 〈2, 2〉 or 〈3〉 which is the lumped state
of states 〈1, 2〉 and 〈2, 1〉.

H. A minor simplification

At this stage, we exploit a minor simplification that is
helpful when computing the instantaneous window availability
instead of a limiting property. When computing a limiting
property, the limiting probability that a certain input is prop-
agated from superior to inferior subsystem does not change
over time. It is the same for time step Ω (i.e. the limit) as it is

for time step Ω + 1. For instantaneous properties on the other
hand, the probability that a certain value is propagated does
change, until reaching the stationary distribution in the limit.
For a precise quantification, it would be necessary to construct
the transition model for the lower subsystem for each time step.

The important question is, how this simplification influ-
ences the result. In the beginning, the input vector (i.e. the
initial distribution) differs maximal from the stationary distri-
bution. With each time step it differs less. When the stationary
distribution replaces the current distribution as input parameter,
convergence is sped up. The next question is, how much the
convergence is sped up. Provided that the initial distribution
assigns the complete probability mass to state 〈0, 0, 0, 0, 0〉 and
that 0 is broadcasted in the beginning, then the probability
that this status changes is less 0.08. With each additional
computation step the computation error gets smaller until
becoming zero in the limit. The simplification is considered
to be acceptable since i) the convergence to the stationary
distribution is fast and the introduced error is only relevant
in the first few computation steps, ii) the error converges to
zero, and iii) the gain for accepting this minor error is a great
simplification in the computation. The lower sub-Markov chain
needs not to be computed (and lumped subsequently) for each
time step.

I. Continuing the construction of D′

Thus, matrices D′2,0, D′2,1 and D′2,2 are constructed. In
these matrices, the states where π2 and π3 are responsible
for bisimilarities have been lumped but the states where
π4 and π5 are responsible for bisimilarities have not. The
overline notation marks the DTMCs as intermediate stage that
possibly carries further potential for lumping. Processes π2
and π3 are uncoupled subsequently. Lumping further reduces
the state space and D′2,−,0, D′2,−,1 and D′2,−,2 are constructed
as shown in Figure 5. Finally, D′low = D′1,0 ⊗K D′2,−,2,
D′both = D′1,1 ⊗K D′2,−,1 and D′up = D′1,2 ⊗K D′2,−,0 are
computed by applying the Kronecker product. In this case
— contrary to [1, 2] — the Kronecker product is applicable,
since two processes execute in parallel. As the cases of parallel
executions have been distinguished from the beginning, the full
DTMC D′ is the accumulated effort of all three case DTMCs:
D′ = D′low +D′both +D′low, shown in Figures 6 and 7.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7. The reduced DTMC D′

Figure 3. Decomposing schema for the WSN transition system

(a) D′1,0 (b) D′1,1 (c) D′1,2

Figure 4. Reduced upper subsystem DTMCs

(a) D′2,−,0 (b) D′2,−,1 (c) D′2,−,2

Figure 5. Reduced and uncoupled lower subsystem DTMCs

(a) D′low (b) D′both (c) D′up

Figure 6. Recomposed DTMCs

J. The result

Figure 8 shows the probability mass in states 〈0, 0, 0, 0, 0〉
when 0 is propagated (i.e. the green line converging from
above) and 〈2, 2, 2, 2, 2〉 when 2 is propagated (i.e. the red
line converging from below) for the first thousand time steps.
It merely takes a little more than a hundred steps until
both lines meet and the system converges to its station-
ary distribution. The numerical values at this time step are
pr(s100 = 〈0, 0, 0, 0, 0〉∧propagated value = 0) = 0.4151 and
pr(s100 = 〈2, 2, 2, 2, 2〉 ∧ propagated value = 2) = 0.4033.
With equal switching and fault probabilities, it was expected
that both predicate satisfaction probabilities converge to the
same value. With switching at 0.03 and a minimum of three
computation steps for convergence and a fault probability of
0.01, it seems plausible that the consistency is about 0.82. The

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8. Result of the WSN example – converging consistency

average consistency of the measured data is about 0.82 in the
limit. The convergence inertia — which is the time spent for
convergence due to both switching and recovery — is shown
in Figure 9 for the first 100 time steps. The term inertia is
chosen as the system requires time to cope with switching and
the effects of faults. The convergence inertia is the probability
with regards to the current time step that the system is between
the legal states.

K. Interpretation

While the limiting windows availability, which was in the
focus of our previous work, is a measure on stop times, the cur-

0 10 20 30 40 50 60 70 80 90 100
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 9. Result of the WSN example – convergence inertia

rent example demonstrates how such a measure on stop times
can continuously be exploited by measuring the desired proba-
bility for each time step in contrast to just its first occurrence.
The example further demonstrates how non-determinism, local
heterarchies, semi-parallel execution semantics and slicing
among multiple — even heterarchical lumpable — processes
can be achieved. The notion of switching introduced a further
challenge by demanding dynamic predicates and doubling the
size of the state space. Furthermore, it extended pure recovery
liveness during times of error to a more general convergence
inertia that accounts for both switching as well as effects
of faults. A system designer has now the opportunity to test
various settings, alter the fault and switching probabilities as
well as the topology, until a suitable system providing the
desired consistency of the measured data is found.

V. CONCLUSION AND FUTURE WORK

We presented an extension to our previous approach.
Related work has been presented and advances in its light
were pointed out. These advances include: a novel fault toler-
ance measure for consistency, discussing how non-determinism
can be regarded, extending the prior method to account
for local heterarchies, semi-parallel execution semantics via
case distinction and decomposing via slicing through multiple
processes. An example scenario evaluated a wireless sensor
network component in that light in order to demonstrate the

practical application of the concepts and methods. Although
wireless sensor networks are a practical application, we will
focus fitting the proposed methods and concepts on further
real world applications. A second direction for the future is to
extend the concepts to cover for security, too. In that sense,
the probabilistic notions of fault tolerance and performance
will be combined with a rather deterimistic view of security
and interactive Markov chains will be employed as model
to determine the safe and secure co-design of a distributed
system.

ACKNOWLEDGMENT

This work was (partially) supported by the German Re-
search Council under grant SFB/TR 14 AVACS, the EU Com-
mission under grant FP7-ICT-2009-257005 MoVeS and by the
funding initiative Niedersächsisches Vorab of the Volkswagen
Foundation and the Ministry of Science and Culture of Lower
Saxony (as part of the Interdisciplinary Research Center on
Critical Systems Engineering for Socio-Technical Systems).

REFERENCES

[1] Nils Müllner, Oliver Theel, and Martin Fränzle. Combining Decom-
position and Reduction for State Space Analysis of a Self-Stabilizing
System. In Proceedings of the 26th IEEE International Conference on
Advanced Information Networking and Applications (AINA2012), pages
936 – 943, Fukuoka-shi, Fukuoka, Japan, March 2012. IEEE Computer
Society Press. Best Paper.

[2] Nils Müllner, Oliver Theel, and Martin Fränzle. Combining De-
composition and Reduction for the State Space Analysis of Self-
Stabilizing Systems. In Journal of Computer and System Sciences
(JCSS), volume 79, pages 1113 – 1125. Elsevier Science Publishers
B. V., November 2013. The paper is an extended version of a publication
with the same title.

[3] John G. Kemeny and James L. Snell. Finite Markov Chains. University
Series in Undergraduate Mathematics. New York, NY, USA, 2, 1976
edition, 1976.

[4] Kim G. Larsen and Arne Skou. Bisimulation Through Probabilistic
Testing. In Conference Record of the 16th ACM Symposium on
Principles of Programming Languages (POPL1989, pages 344 – 352,
1989.

[5] Peter Buchholz. Exact and Ordinary Lumpability in Finite Markov
Chains. Journal of Applied Probability, 31(1):59–75, 1994.

[6] Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreev, and David N.
Jansen. Bisimulation Minimisation Mostly Speeds up Probabilistic
Model Checking. In Proceedings of the 13th international conference
on Tools and algorithms for the construction and analysis of systems,
TACAS’07, pages 87–101, Berlin, Heidelberg, 2007. Springer-Verlag.

[7] Hubert Garavel, Frédéric Lang, and Radu Mateescu. An overview of
CADP 2001. Research Report RT-0254, INRIA, 2001.

[8] LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. Standard, September 1989.
Information Processing Systems, Open Systems Interconnection.

[9] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. Dynamic
Fault Tree analysis using Input/Output Interactive Markov Chains.
In 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2007, pages 708–717, Los Alamitos, CA,
USA, June 2007. IEEE Computer Society Press.

[10] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. A Com-
positional Semantics for Dynamic Fault Trees in Terms of Interactive
Markov Chains. In Proceedings of the 5th international conference on
Automated technology for verification and analysis, ATVA’07, pages
441–456, Berlin, Heidelberg, 2007. Springer-Verlag.

[11] Hichem Boudali, Pepijn Crouzen, Boudewijn R. Haverkort, Matthias
Kuntz, and Mariëlle Stoelinga. Arcade - A Formal, Extensible, Model-
Based Dependability Evaluation Framework. In ICECCS, pages 243–
248. IEEE Computer Society, 2008.

[12] Hichem Boudali, Pepijn Crouzen, Boudewijn R. Haverkort, Matthias
Kuntz, and Mariëlle Stoelinga. Architectural Dependability Evaluation
with Arcade. In DSN, pages 512–521, 2008.

[13] Hichem Boudali, Hasan Sözer, and Mariëlle Stoelinga. Architectural
Availability Analysis of Software Decomposition for Local Recovery.
In SSIRI, pages 14–22, 2009.

[14] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. A Rigorous,
Compositional, and Extensible Framework for Dynamic Fault Tree
Analysis. IEEE Trans. Dependable Sec. Comput., 7(2):128–143, 2010.

[15] Holger Hermanns and Joost-Pieter Katoen. Automated Compositional
Markov Chain Generation for a Plain-Old Telephone System. In Science
of Computer Programming, pages 97–127, 1999.

[16] Jenna Burrell, Tim Brooke, and Richard Beckwith. Vineyard Com-
puting: Sensor Networks in Agricultural Production. IEEE Pervasive
Computing, 3:38 – 45, 2004.

[17] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach, 2nd Edition. Morgan Kaufmann Publishers Inc.,
1996.

[18] David A. Patterson and John L. Hennessy. Computer Organization
and Design: The Hardware/Software Interface. Morgan Kaufmann
Publishers Inc., 2005.

[19] Stéphane Devismes, Sèbastien Tixeuil, and Masafumi Yamashita. Weak
vs. Self vs. Probabilistic Stabilization. In Proceedings of the 28th Inter-
national Conference on Distributed Computing Systems (ICDCS2008),
pages 681 – 688, Washington, DC, USA, 2008. IEEE Computer Society
Press.

[20] Nils Müllner, Abhishek Dhama, and Oliver Theel. Deriving a Good
Trade-off Between System Availability and Time Redundancy. In Pro-
ceedings of the Symposia and Workshops on Ubiquitous, Automatic and
Trusted Computing, number E3737 in Track "International Symposium
on UbiCom Frontiers - Innovative Research, Systems and Technologies
(Ufirst-09)", pages 61 – 67, Brisbane, QLD, Australia, July 2009. IEEE
Computer Society Press.

	Introduction
	Model
	Method
	Example
	The setup
	The goal
	The motivation
	The input parameters
	The safety predicate
	The state spaces of the subsystems
	The decomposition
	A minor simplification
	Continuing the construction of D'
	The result
	Interpretation

	Conclusion and Future Work
	References

