Combining Decomposition and Reduction for
State Space Analysis of a Self-Stabilizing System

Nils Miillner, Oliver Theel, Martin Frinzle
Department of Computer Science
Carl von Ossietzky University of Oldenburg
D-26111 Oldenburg, Germany
Email: nils.muellner|oliver.theel|martin.fraenzle @informatik.uni-oldenburg.de

Abstract—Verifying fault tolerance properties of a distributed
system can be achieved by state space analysis via Markov chains.
Yet, the power of such exact analytic methods is confined by
exponential growth of the chain’s state space in the size of the
system modeled. We propose a method that alleviates this limit.
Lumping is a well known reduction technique that can be applied
to a Markov chain to prune redundant information. We propose
a system decomposition to employ lumping piecewise on the
considerably smaller Markov chains of the subsystems which
are much more likely to be tractable. Recomposing the lumped
Markov chains of the subsystems results in a state space that is
likely to be considerably smaller. An example demonstrates how
the limiting window availability (i.e. a fault tolerance property)
can be computed for a system while exploiting the combination
of lumping and decomposition.

I. INTRODUCTION

Fault tolerance is a desirable property in distributed sys-
tems. System engineers can access a repertoire of detectors
and correctors to make a distributed system fault tolerant.
While detectors reveal corruptions, correctors let the system
recover. A system becomes fail-safe when employing fault
detectors only (before violating its safety predicate it shuts
down). It becomes non-masking fault tolerant with correctors
only (before violating its liveness predicate it exposes the
user to undesired behavior). When a system is equipped
with both, detectors and correctors, it becomes masking fault
tolerant (for certain faults). While corruptions are detected,
the system’s service can be withheld from the system user
until the system fully recovers. Detectors and correctors both
commonly employ redundancy, either spatial (e.g. parity bits,
checksums or other techniques from the coding theory domain)
or temporal (e.g. self-stabilization) or a combination thereof
(e.g. retry after detection). To ensure system liveness, the
system must not recover indefinitely. To prevent starvation,
the time for recovery must be limited. The relation between
time for recovery and the probability of successful recovery
is defined by the limiting window availability (LWA) [1].
Intuitively, allowing more time for recovery leads to a higher
probability of a successful recovery.

a) Focus on Correctors via Temporal Redundancy: To
keep the focus on the temporal dimension that accounts for
the liveness property, an appropriate test case must utilize
solely temporal redundancy to exclude external effects that
arise when multiple sources of redundancy are exploited

for detectors and correctors. Temporal redundancy can be
employed either for detectors or correctors or a combination
thereof. In order to compute the effects of time on recovery, the
time used for redundancy must only be spent for correction.
One suitable example, where only femporal correction takes
place, can be found in self-stabilizing systems. While the
system is able to recover from transient faults by correction,
it cannot tell if it works according to its specification or not.
It lacks fault detection. The only redundancy required by self-
stabilization is time (i.e. if space requirements for additional
code for self-stabilization are neglected). To measure the LWA
of a self-stabilizing system, a fault detector is added, mounted
between the system and its user. It passes inquiries from the
user to the system. If the system response is assumed to be
correct, the system response is passed to the user. Otherwise,
the fault detector blocks the response and retries the inquiry.
As discussed above, the number of retries is to be limited. For
simplification, we assume a perfect fault detector (i.e. no false
positives, no false negatives).

b) Markov chains, Lumping and Decomposition: The
LWA can be computed by state space analysis. As the pro-
cesses in a distributed system communicate, the effects of
faults propagate through the system. The state space analysis
computing the LWA considers all states that the system can be
in as well as the transitions between them. The probabilities
with which processes execute a computational step or a fault
step define the transition probabilities between the states. The
result is a discrete time Markov chain (DTMC) D. The Markov
chain reduction with lumping was presented in [1]. When a
set of processes of a distributed system behaves equal in the
sense that processes have the same effect on the system, the
information which of these processes is in a certain condition is
redundant. The information that one of them is in a certain con-
dition suffices here (i.e. in the light of computing the LWA).
Pruning this redundant information by lumping the relevant
states can reduce the state space tremendously. As this lumping
results in a strongly probabilistic bisimilar DTMC, the lumped
DTMC does still compute the exact LWA. In this paper we
propose system decomposition to apply lumping piecewise on
the subsystems. Thereby, the necessity to consider the whole
DTMC at once for reduction becomes obsolete. Piecewise
lumping facilitates lumping and analysis of considerably larger
systems than tractable without decomposition.

¢) Classification of Fault Propagation: Fault propagation
plays an important role for the system decomposition. We
distinguish three classes of fault propagation: i) hierarchical,
ii) semi-hierarchical and iii) heterarchical.

« In a hierarchical system, a designated root process is the
accepted leader among the processes of a system and does
not rely on any other process. The processes are semi-
ordered according to their distance to this root. Each non-
root process only accepts information from processes that
are closer to the root than itself. Therefore, the effects
of faults strictly propagate from the leader towards the
processes that have maximal distance hierarchically.

o Semi-hierarchical systems follow the same principle, but
the role of the designated leader might switch. Thereby,
each case of possible leader is to be considered distinc-
tively. Furthermore, faults can propagate in any direction
during leader change.

o In heterarchical systems, all processes are continuously
peers. The effects of faults propagate in any direction at
any time.

In this paper we exploit the benefits of hierarchical fault
propagation to introduce the proposed combination of lumping
and decomposition. Hierarchical fault propagation transforms
a system’s architectural graph into a directed acyclic graph
(where processes communicate only according to the hier-
archy). When decomposing such a system, the property of
unidirectional fault propagation becomes an asset. The main
contributions of this paper are a decomposition and piecewise
lumping scheme alleviating the burden of state space explosion
while maintaining a strong probabilistic bisimulation, plus its
formal correctness argument (Proof 2). After a suitable system
model is introduced and related work is discussed in Section
II, Section III shows how lumping and decomposition can be
combined. Section IV demonstrates the proposed method when
computing the LWA for a self-stabilizing system. Section
V concludes this work and gives a short outlook on future
advances.

II. PRELIMINARIES AND RELATED WORK

Section II-A introduces the system model and Section II-B
discusses related work.

A. Preliminaries

A set II comprises n processes {m1,...,m,} that are
connected via bidirectional communication channels. Two pro-
cesses that are connected are called neighbors. Each process
has one memory register r; and can read its neighbors’
registers and write to its own register. The system state s; at
time ¢ is the snapshot of the assigned values over all registers
St =(T1,. .,).

As a canonical simplification, the state space is abstracted
with a three value based logic: ; = 0 means r; = P (we say
process ; stores an intended value, it is in a correct state, or
the register r; satisfies the safety predicate P). The case when
r; [~ P further distinguishes two instances. Either r; = 1
when 7; is provided with contradicting information (it reads

both 0 and 2 values from neighbors). Then, it knowingly cannot
compute a correct value. And r; = 2 if it unknowingly stores
an incorrect value, either as the consequence of a direct fault or
by transient fault propagation'. The system satisfies the global
safety predicate s; = P iff Vmr; € IT: r; = 0.

The system executes the self-stabilizing broadcast algorithm
introduced in [1, p.24]. It is self-stabilizing and establishes
hierarchical fault propagation. The algorithm is described
informally here. Process 7 is selected for the distinguished
root process. We assume that faults only perturb the register
of the executing processes and that a probabilistic scheduler
(equiprobably) selects processes under serial execution seman-
tics to take execution steps. This means, that each time step
exactly one process is randomly selected to take an execution
step with probability e = % With probability p it executes
a computational step (i.e. as desired) and with probability
q = 1 — p it takes a fault step (i.e. the process’ register is
corrupted by a fault). In the latter case the executing process
writes a 2 to its register.

Under a probabilistic scheduler and fault model, the sys-
tem’s DTMC D is ergodic. Hence, regardless of its initial
state, D reaches the same stationary distribution. This station-
ary distribution is used as initial probability distribution for
computing the LWA, that is, the probability that the system
either satisfies the safety predicate P in the steady state or
within at most w time steps after for at least one computation
step.

Definition 1

LWA,, = prob{3k,0 < k < w: s, E P} D

B. Related Work

The decomposition extends our earlier work [1] on lumping
in the light of fault tolerance analysis. Finite Markov chains
and lumping are introduced by Kemeny and Snell [2] in a
general manner, neither with exploiting symmetries of fault
tolerant systems for lumping, nor with a focus on system
decomposition. Weak probabilistic bisimulations on various
models like Markov chains and Petri nets are discussed in
Mertsiotakis’ PhD thesis [3] that reveals how lumping can
be exploited until a model becomes tractable for analysis.
Nevertheless, lumping while maintaining strong probabilis-
tic bisimilarity could exploit symmetric properties like fault
propagation that were not discussed there. Focusing on per-
formance analysis, Capra et al. [4] apply lumping to reduce
Markov chains but without system decomposition. Derisavi
contributed on the optimality of lumping [5], [6], [7], [8] but
with a general focus. Kulkarni [9] introduced a compositional
approach to fault tolerant design in his PhD thesis. In this
approach, a masking fault tolerant system is assembled by
first adding correctors to an otherwise fault intolerant system,
and detectors afterwards. This work was extended in several

IThe abstraction does not distinguish between different faults. So if a
process reads 2 twice, then the reading process reads them as the same fault
and accepts that value as locally correct.

papers [10], [11], [12]. Although this decomposition divided
the system’s capabilities into detectors and correctors, it did
not decompose the system itself but layers of correctors and
detectors only. Furthermore, the work lacked a qualitative
analysis of fault tolerance measures.

III. DECOMPOSITION AND LUMPING

The proposed approach contains three steps: System decom-
position is discussed in Section III-A, reduction of the subsys-
tems’ DTMCs is shown in Section III-B, and recomposition of
the DTMC:s is presented in Section III-C. After introducing the
approach informally, Section III-D provides the proofs that the
proposed method provides a strongly probabilistic bisimilar
model. Final remarks in Section III-E conclude this section.

Self-stabilizing systems have the benefit of unidirectional
fault propagation. Given this property, decomposition gives
leeway to piecewise analysis of the subsystems. During the
analysis, symmetries within states can be identified. The
respective states can be lumped. Thus, the size of the Markov
chain of the subsystem decreases if lumping is applicable.

A. Decomposition

Two properties are important for the decomposition. For
once, the system should be split into chunks that are as large
as tractable. Secondly, certain processes should be in the same
subsystems. Only those processes are bisimilar that have an
equal effect on the system. Therefor, under unidirectional fault
propagation, the decomposition should put processes into the
same subsystems that have an equal (minimal) distance to the
root.

Each subsystem shares at least one process with another
subsystem. The shared process is referred to as transient.
Two subsystems can share more than one transient and one
transient can be shared by more than two subsystems (which
are attributes derived from unidirectional fault propagation
that excludes cycling faults). When a decomposition pattern
has been chosen, the transformation from subsystem to its
corresponding DTMC starts at the subsystem that contains
the root process. The set of processes II is split into subsets
11y, ..., II,, with m; € II;. We label the DTMC of subsystem
II; with D;, the DTMC excluding any transients from lower
subsystems® with D; _ (the — means exclusion of all lower
transients), and the DTMC that models a transient 7; with D,.
The successive transformation of the subsystems into DTMCs
is accomplished in three recursive steps starting with II;.

Step 1: The initial subsystem analyzed is II; C II. The
DTMC D; of II; is constructed as described in [1]. The
relation between the scheduler election probabilities e between
II; and the rest of the system is important. Assume a system
comprising a set of processes 11 under serial execution seman-
tics. As only a subset of II is analyzed during the decompo-
sition, chances are that either one process in II; executes, or
a process outside 1I; executes. The DTMC of II; itself does
not take the possibility into account yet that a process outside

ZHi is lower than II; if its minimal distance to D1 is greater.

II; executes. In that case II; remains in its state for one step.
To take global scheduling probabilities into consideration, all
transition probabilities of D; are multiplied with prob(Ily),
the chance that a process within II; executes. The diagonal
elements of the transition matrix D; are the probabilities
that the sub-system remains in its state. Subsequently, the
probability 1—prob(Il;) (the probability that a process outside
II; executes) is added to the diagonal elements. Thereby,
the scheduler selection probabilities are taken into account
and D, is constructed. Subsystem II; and its neighbors (the
subsystems to which II; propagates faults directly) share
at least one mutual process. When constructing the Markov
chains below D;, the neighbors of II; take the intersecting
process 7; as their local root. As we must regard each process
only once, we exclude the intersecting process’ Markov chain
D, from D; and get D; _. Afterwards, we can continue
with construction of the lower Markov chains. The result is
Dy = Di,— ® Dy, (analogously for multiple intersections).
The ® operator is used for the serial composition® of Markov
chains. The algorithm for a serial composition of two DTMCs
is shown in Figure 5. The example in Section IV shows its
corresponding DTMC:s in Figure 3.

Step 2: A subsystem II;,7 > 1 shares one or more processes
with subsystems that are closer to II; than itself. The DTMCs
for these subsystems II; are computed in a recursive manner.
Further transients with underlying subsystems (i.e. subsystems
that are farther away from II; than II; itself) can be split as
described above. One process can be shared by more than two
subsystems, for example, if 7; € 11y, Ils, I3 (IT> and II5 then
both have an equal distance from II; by definition). Process 7;
propagates effects of faults into both subsystems IIs and II3.
The transient m; must only be regarded once. It is excluded
from D; _ and it must be further excluded from either Ds,
leaving it in D5, or vice versa.

Step 3: Eventually, the lower-most sub-systems (i.e, subsys-
tems that do not propagate into other subsystems) are reached.
They take the input from those neighboring subsystem(s) that
are closer to the root process. They do not share transients
with underlying subsystems, so only shared processes with
subsystems that have an equal distance to II; must be regarded
for exclusion.

B. Reduction

A subsystem’s DTMC comprises states and transitions,
D; = (I1;, prob,), prob : II; x II;. The conditions that qualify
two states for lumping have been discussed in [13] and are
formally defined in Definition 2. The reduced version of D;
is labeled with D;.

C. Recomposition

To recompose the DTMCs of the subsystems, the relevant

(possibly reduced) sub-Markov chains D, ..., D), are com-

bined using the ® operator. The recomposed Markov chain

3Serial composition is an interleaving-type parallel execution semantics,
which operates on the Kronecker product of the components’ transition
matrices like true concurrency, yet excludes transitions in which more than
one subsystem changes its register per time step.

is labeled D’ = D} ®
or not applicable VD,
Markov chain D = D'.

.. ® D!.. If the lumping was skipped
: D) = D, the result is the original

D. Formal Method and Proof

We label the equivalence class of a state s under ~ with
[$]~. The Markov chain D of a system comprises states .S that
are connected via transition probabilities D = (S, prob). We
label the initial probability distribution over D with prob” (D),
after k iterations with prob®(D), and the steady state with
prob™ (D).

Two states s; and s; belong to the same equivalence class if
they either both satisfy or both dissatisfy the safety predicate
‘P, and have equal transition probabilities for each of their
target states, as shown in Definition 2.

Definition 2

S;~ 85 &=

((Si ': PV Sj 'Z 73)/\
(si P Vs; =PV
Vs € S : prob(s;,s) = prob(s;, s)

We reduce the Markov chain with red(D,P) and fit the
safety predicate as shown in Definition 3.

Definition 3

red(D,P) = (D', P") 2)
D/ = (Sred7p'r0bred) (3)
Sred = {[s]~|s € S} 4)
prob,eq([sil~s [sjl~) = Y prob(di,d;), d; € [s)]~
diE[Si]N
)

sl EP & 3de[s].:dEP (6)

Equation 4 describes the state lumping and equation 5
the transition lumping. The reduction by Definition 3 lumps
those states that are in the same equivalence class [s].
(transitions respectively). The constraints that qualify states
for equivalence classes are defined in Definition 2. The safety
predicate P is defined for the state space of D. We require an
(analogously lumped) predicate P’ that matches the reduced
state space of D’, shown in Equation 6, that describes the
predicate lumping. In order to show that the same LWA
is computed by D and D’ (i.e. their strong probabilistic
bisimilarity), we must first show that both have an equal steady
state probability distribution.

Theorem 1

Z prob™ (d @)
d€[s]~

proboe;([s

We show that both the original and the reduced Markov
chain have an equal steady state probability distribution ac-
cording to their equivalence classes by induction.

Proof 1

Let prob be an arbitrary initial distribution for D and let

prob? 4 ([s]~) = 3 prob®(d) be an initial distribution
de[s]~

for D'. Show that for prob® and prob:fed, which are the

probability distributions for D (D’ respectively) at time point

k with an initial distribution prob° (prob?®_, respectively) the

following holds:

Yk - prob® ,([s

Z pmbk ®)

de[s]~

Proof per induction over k.
Anchor: k = 0 holds by assumption.
Step: show that the following holds

Assumption:
pTObf:(_il Z pTObred) ’ prObred([d]Nv [S]N)
[(i] E€Sred
)
Z Z probk Z prob(d, f)) (10)
[d]~€Srea e€ld]~ felsl~
Z Z Z prob®(e) - prob(d, f) (11)
[d]~ €Sreq e€[d)~ fE[S]~
and with prob(e, f) = prob(d, f)
Z Z Z probk) - prob(e, f) (12)
[d]~ €Sreq e€[d]~
= Z Z pmb) - prob(e, f) (13)
e€S fels]~
Z Zprobk(e) - prob(e, f) (14)
fels]~ e€5
Z prob* T (d) (15)
de(s]~
Thereby, Vk : prob® ,([s]<) = S prob*(d). O
de[s]~
Corollary 1
Theorem 7 and the first two conditions from

Definition 2 imply that the limiting availability LWAq

satisfies LWAo(D,P) = LWAo(D',P’). Thereby
LWAy(D,P) = > prob™(s) and consequently
sE=P
LWAO(D/’P,) = E prObred([])
o] P

Finally, we show that both Markov chains D and D’
compute the exact same LWA.

Theorem 2
LWA(D,P) ~ LWA(D',P’) : red(D, P) = (D', P")
with D = (S, prob), prob : S x S — R
Proof 2

Anchor: LWAo(D, P) = LWA(D',P’) (cf. Corollary 1)

Step: Analogous to Proof 1, except prob® becomes prob™.

E. Final Remarks

The method presented comprises four steps: i) system
decomposition, ii) construction of the subsystems’ DTMCs,
iii) reduction of the DTMCs with lumping, and iv) the re-
composition of the reduced DTMCs. With unidirectional fault
propagation splitting is arbitrary. General recommendations
(tractability and distance) were discussed in Section III-A.
Issues that arise during the decomposition, like accounting for
scheduling probabilities of subsystems, have been addressed.
Notably, symmetries in DTMCs that arise with serial execution
semantics have explicitly not been exploited. Hence, the meth-
ods presented are also capable to cope with truly concurrent
execution semantics. Lumping now offers a chance to alleviate
state space explosion on the level of the subsystems. The
reduction can be applied before considering the whole system,
i.e. piecewise, at a possibly considerably smaller amount of
complexity.

1V. EXAMPLE

We outline the example in Section IV-A and decompose it
in Section IV-B.The results are summarized in Section IV-C.

A. Outline

Assume a distributed system comprising seven processes
IT = {my,..., w7} that are connected as shown in Figure 1.
A probabilistic scheduler selects one of the processes in each
computational step. All processes have an equal probability
to be selected for execution. The processes execute the self-
stabilizing broadcast algorithm introduced in [1]. For self-
containment of the paper, the next paragraph contains a short
informal description of the algorithm. The root process 1,

Figure 1: The Example System @ --------

Figure 2: Decomposition

when executing a computation step, stores the value 0 in its
register in absence of a fault, and a 2 if it is perturbed by a
fault. Processes mo and w3, when executing, copy the value
of r; to their respective register. Process m4 stores 0 when
(Tg :0/\’)"3 :O)V(TQ :0/\7"3 = 1)V(T2 = 1/\7“3 :0)
It stores 2 when (ro = 2A7rg = 2)V (ra = 2Ar3 =

1)V (re = 1 Arg = 2). The value 1 is stored otherwise,
when both 0 and 2 are read. Process m; executes the same
way with respect to 75 and rg. Processes 75 and 7, when
executing a computation step, copy the value from r4 to their
respective register. The state space comprises states s; =
(ri,re,...,r7) € {(0,0,0,0,0,0,0),...(2,2,2,2,2,2,2)},
which spans the state space to 23 - 3* = 648 states (processes
m, 7o, and 73 cannot derive 1). Transient faults perturb
the executing process with a probability g. The registers of
non-executing processes remain untouched by faults. Figure
2 shows the decomposition road map. The dotted arrows
in Figure 2 show the common trail without decomposition
(II — D — D’). The solid arrows show the decomposition
proposed, where lumping is applied piecewise, relieving the
necessity to deal with the whole Markov chain. The system
is split into 11y = {my,...,m4} and Iy = {my,...,77}. We
compute D; from S, and split it into D _ and D;,. The state
space of Dy with eight states is reduced to D] _ with six
states. Then, D,, and the remaining processes form Dy with
3* = 81 states. In D, 54 states can be lumped to 27 states.
The resulting reduced DTMC D, has 54 states. Re-composing
D' = D) _ ® Dy results in a DTMC with only 324 states.

B. Splitting and Lumping

The decomposition comprises five steps shown in Figure 2.
Each following paragraph describes one step. We set the fault
probability to g = 0.05.

Step 1: Dy — Dl,, ®D7r4.'

First, DTMC D; is computed (cf. left hand side of Figure
3 without transition probabilities). The probability that the
scheduler selects a process of II; is %. Hence, each transition
in D; is to be multiplied with %, the probability that a process
within II; is selected (cf. Section III-A Step 1). Then, all loop
transitions (the diagonal entries of the transition matrix D)
gain the probability mass %, which is the probability that a
process outside S7 is selected for execution. The steady state
probability distribution of D; is shown in Table I.

G«

BED L

Y NH
Yo MR
7

¢

Figure 3: Markov Chain Decomposition

We employ lumping for both splitting Markov chains (e.g.
D1 — D1,—-®Dx,) and pruning of redundant information (e.g.
Dy, — Dj). For splitting we lump all states in D; that have
“the first three digits” in common (e.g. where (rq,rs,73,74)

State {0,0,0,0Y | (2,0,0,0y | (0,2,0,0y | 0,0,2,0)
Probability 0.7238 0.0125 0.0208 0.0208
State {0,0,0,2) | (0,0,0,1) | (2,2,0,0) | (2,0,2,0)
Probability 0.0469 0.0514 0.0046 0.0046
State (2,0,0,2) | (2,0,0,1) | (0,2,2,0y | (0,2,0,2)
Probability 0.0008 0.0007 0.0022 0.0063
State {0,2,0,1) | (0,0,2,2) | (0,0,2,1) | (2,2,2,0)
Probability 0.0308 0.0063 0.0308 0.0048
State 2,2,0,2) | (2,2,0,1) | (2,0,2,2) | (2,0,2,1)
Probability 0.0005 0.0035 0.0005 0.0035
State 0,2,2,2) | (0,2,2,1) | (2,2,2,2) | (2,2,2,1)
Probability 0.0077 0.0022 0.0104 0.0037

Table I: D;’s Steady State Distribution

= (0,0,0,0), (0,0,0,1), or (0,0,0,2)) and get D; _. After-
wards, we conclude all states in D; that have “the fourth digit”
in common and get D,,. When re-composing D; _ ® M, we
get D;. The second way we exploit lumping prunes DTMC
Dy, to D} _. We abbreviate [0,2]. (the equivalence class
that contains (r;,r;) = {(0,2),(2,0)}) with 1 (the doubly
lined number indicates the number of faulty registers). For the
analysis it is regardless which of 75 and 73 exactly is corrupted
as they behave the same (same scheduler selection probability,
same fault probability, same position in the system). The
corresponding states (e.g. (0,0, 2) and (0, 2,0)) have an equal
role in the DTMC. The information that just one of them is
corrupted suffices to compute the LWA. We split D; into
D1,— (cf. Table II) and D;, (cf. Table III). The stationary
distributions of the split DTMCs are simply the sums of the
stationary distribution that the lumped states comprise. A re-
calculation of the stationary distribution is not necessary. We
label the transition probabilities in D, as shown in Table III to
later refer to them when computing D,. To identify lumpable
states we compare their transition probabilities to mutual target
states (given they only have mutual target states). If these are
equal, the tuple under consideration qualifies for lumping.

from/to— (0,0,0) (2,0,0) (0,2, 0) (0,0,2)
(0,0, 0) 0.978571 0.007143 0.007143 0.007143
(2,0,0) 0.135714 0.578571
(0,2,0) 0.135714 0.850000
(0,0, 2) 0.135714 0.850000
(2,2,0) 0.135714
(2,0,2) 0.135714
(0,2,2) 0.135714 0.135714

Throm/to— | (2, 2,0) 2,0,2) 0,2,2) | (2,2,2)
(2,0,0) 0.142857 0.142857
(0,2,0) 0.007143 0.007143
(0,0,2) 0.007143 0.007143
(2.2,0) |n0w21429 0.142857
(2,0,2) 0.721429 0.142857
(0,2,2) 0.721429 | 0.007143
(2,2,2) 0.135714 0.864286

Table I1I: Dy
‘ | from/to— ‘ (0) ‘ (1) ‘ (2) ‘
(0) ry = 0.982972 sq4 = 0.008687 tqg = 0.008341
(1) ug = 0.055813 va = 0.930721 wa = 0.013466
(2) x4 = 0.081422 ya = 0.023461 za = 0.895117

Table III: D,

Step 2: Dy, — Dy _:
In D;,_ we spot the two states (0,0,2) and (0,2,0) to have

an equal output. They are lumped into (0,1) (as are (2,0, 2)
and (2,2,0) to (2,1)). The resulting DTMC D _ is shown
in Table IV.

[Tfromio— [{0,0,0y [(2,0,0y [(0,1) [2.1y [(0,2,2) | (2.2,2)
{0, 0,0) 0.9786 | 0.0071 | 0.0143
(2,0,0) 0.1357 | 0.5786 0.2857
(0,1) 0.1357 0.8500 | 0.0071 | 0.0071
(2,1) 0.1357 | 0.7214 0.1429
(0,2, 2) 0.2714 0.7214 | 0.0071
(2,2,2) 0.1357 | 0.8643

Table IV: D; _

Step 3: 'Dﬂ—4 ® |H2 \ {7T4}| — Ds:
With D,, at hand, we can easily compute Djy. In IIy (the
lower part of the system), each process stores either 0, 1 or 2.
Therefore, with four processes, the state space of 115 comprises
3* = 81 states. We exemplarily compute one transition in
equation 16:

1
(1,2,2,2) — (2,2,2,2) = 1 Wy (16)

The transition probability w, is given in Table III. Transi-
tions between states where 7, does not change its register
are computed analogously to D;. Transitions that alter 74,
as exemplarily shown in Equation 16, are computed with the
values in Table III.

Step 4: Dy — D:

Reducing Dy — D), offers 27 state pairs to be lumped. The
sets can informally be described as pairs of states, where 74
and r; store an equal value, while r5 and rg store unequal
values, and each state’s r5 is equal to the mutual other state’s
r¢. For instance, state (0,0, 2,2) and (0, 2,0, 2) can be lumped
to (0,1,2). For the computation of the LIWA we need not
know which of the processes 75 and g actually is corrupted.
Knowing that one of them is defective suffices to compute
the LWA. The following pattern defines the sets of lumpable
states formally:

A state of Dy is of the form co = (r4,75,76,77). States

e (x,0,1,y) and (z,1,0,y) form (x,1,y),

e (x,0,2,y) and (z,2,0,y) form to (x,2,y), and

e (2,1,2,y) and (z,2,1,y) form to (z,3,y).

State pairs s; and s; (with ri of s;, and rJ of s;) are
lumpable where

1) 7% =7 (or ri = 7 respectively), and

2) 7§ #r§, and _

3) rt =r} and r§ = rl.

The first condition demands that the registers r4 within both
states must be equal (respectively r7). The second condition
demands, that the registers r5 and r¢ must not be equal within
each state. The third condition demands, that 75 in both states
is equal to 7 of the other state.

After lumping states, the lumping of transitions is pre-
sented. To reduce a set of states, all their incoming and
outgoing transitions must be aggregated. We exemplarily
show the lumping of a transition set that aggregates transi-
tions from one lump of states into another lump of states:

(1,1,0),(0,1,0). The @ operator is used to describe the
reduction of states (similar to the ® operator we used
earlier). The first lump comprises the states (1,1,0) =
(1,1,0,0) @ (1,0,1,0). The second lump comprises the
states (0,1,0) = (0,1,0,0) & (0,0, 1,0). While some tran-
sition probabilities are zero prob((1,1,0,0),(0,0,1,0)) =
prob((1,0,1,0),(0,1,0,0)) = 0, others form the aggre-
gated transition probability prob((1,1,0,0),(0,1,0,0)) = uy-
pmb(m)é, and prob((1,0,1,0),(0,0,1,0)) = uy-prob(my)-
%. The variable u4 is the transition probability that 4 changes
its value from 1 to 0 as shown in Table III, and prob(my)
is the execution probability of 74 within the sub-system, i.e.
here ;. As discussed in Stepl : Dy — Dy _ ® Dx,, the
distinction between the possibilities that either a process in the
DTMC (here Ds) is selected for execution, or a process outside
is selected (which is D; _ in this case), is important. We
regard this distinction before lumping. Hence, the transition
probabilities are multiplied with %.

Ifrom/to— | (0,1,0,0) (0,0,1,0)
(1,1,0,0) | uq-ma- 3 0
(1,0,1,0) 0 Ug Ty 3

Table V: Example Transition Lumping: Equations

With steady state probabilities

e prob®((1,1,0,0)) = 0.0041598 and

o prob®((1,0,1,0)) = 0.0025722
and the above transition probabilities, Equation (1) from [1,
p-27] computes the lumped transition probability shown in
Equation 17 (cf. Figure 4):

({1,1,0,0),(0, 1,0, 0) - prob>((1,1,0,0)))
prob>((1,1,0,0) + prob>((1,0,1,0))
({1,0,1,0,(0,0,1,0) - prob>({1,0,1,0)))
prob>((1,1,0,0) + prob>((1,0,1,0))

(1,1,0),(0,1,0) =
a7

All equivalence classes are lumped this way. The resulting

4200360200
J —
(10205500020
Figure 4: Reduction Example

DTMC is Dj.
Step 5: Re-Composition:

With D} _ and Dj at hand, D’ is composed which has the
perk to be strongly probabilistic bisimilar to D and therefor
can compute the LWA of the original system. Notably, both
DTMCs D/L— and D), execute computation steps parallel as
their probabilities have been weighted. For re-composition,
each entry of D] _ is multiplied with each entry of Dj. The
coordinates are labeled row i and column 7 in D/Lf’ and k£ and
1 in D} respectively. The algorithm in Figure 5 computes the
re-composition: The final step to let D’ compute the LWA (the
stationary distribution is known), is to set the transition prob-
ability D’(1,1) := 1, and ¥m,1 < m < 324 : D'(1,m) := 0
as discussed in [1, ch.4] (the state aggregate that satisfies the
(lumped) safety predicate becomes an absorbing state).

D’ = zeros(324);

for j =1:6 do

for | =1:54 do

fori =1:6do

for k =1:54 do

if © # Al # k then
D((G—1)-54+1,(Gi—1)-54+1) =
Dy (G- 1)-5441,(i—1)-54+1) +
D) _(5,9) - Dy(l k) - %5
D((j—1)-54+1,(j — 1) 54+ k) =
Dy, ((G—1)-54+1,(j—1) 54 +k)+
D} _(5,9) - Dyl k) - %

else

D:((jfl)-54+l,(i71)-54+k) =
D) _((j—1)-54+1,(i—1)-54+k) +
D1, (5,1) - Dy (1, k);

Figure 5: Recomposition of D}, and Dj to D’

C. Conclusion

The DTMC D’ computes the LWA. Figure 6 shows the
strictly monotonous increase of probability mass over the
first 1000 computation steps. If the system is supposed to
obtain a certain amount of availability within a distinct
number of computation steps, we can now refer to Fig-
ure 6 that tells the associated amount of time that would
be required to meet the demand. Furthermore, we can in-
vestigate the probability mass drain throughout the states
over time. For reference purposes we order the lumped
states (0,0,0,0,0,0,0),...(2,2,2,2,2,2,2). Comparing the
degree of probability mass drain within each state, as shown
in Figure 7, exposes two prominent states for discussion.
These are namely the 43"¢ ({0,0,0,1,1,1,1)) and the 109"
({0,1,0,0,0,0)) state. Although initially equipped with a
similar amount of probability mass, the 109t state looses
its probability mass rapidly, while the 43" state is drained
at a slower pace as shown in Figures 8 and 9. The initial

Probability

e
o

Fd
U

200 400 600 800 1000
Iteration

Figure 6: LWA of the Example System

motivation of computing the LWA was to find the required
amount of time to achieve a certain probability with which
a non-masking fault tolerant system can mask faults under
fault detection. Knowing about the probability mass drain
of all states allows yet for much more. Some systems offer
the possibility for certain states to be either prevented or
instantly repaired (cf. snap stabilization). When looking for
state candidates for which counter measures should be applied,

0.05 '

;

State

100

Probability Mass

50 .
Tteration

Figure 7: Probability Mass Drain

S S S
> > >
=i = %

Probability Mass

0 20 40 . 60 80 100
Iteration

Figure 8: 43"¢ State

the 43"¢ state is obviously a more suitable point of attack
than the 109%" state. Either preventing the 43" state to collect
probability mass in the first place, or employing measures that
help drain this state at a faster pace both seem desirable targets.
Further analyses, especially when applying upper temporal
boundaries, let all states be sorted in this manner. For instance,
a constraint might be that the system must be stable after at
most 30 computation steps with a maximal probability. The
designer may have the possibility to prevent certain states
at an extra cost. Which states should be prevented? Having
resources for a distinct number n of states to tackle, as well
as a the list of all states sorted by the probability mass they
withhold at time point 30, the top n states (considering that
lumped states comprise two states in our case) are in the
solution set.

0.08; T T T T

S
>
=3

Probability Mass

20 0 60 80 100
Iteration

Figure 9: 109" State

e::

V. CONCLUSION

The likelihood of a fault-tolerant distributed system, be it
masking or non-masking, to provide service can be computed
with the help of Markov models. A common limiting fac-
tor is the complexity of a system’s corresponding Markov
model growing exponentially with the system’s size. Hence,
Markov model analysis soon becomes intractable. Lumping is
a popular means of reducing a Markov model to a possibly
considerably smaller size via either weak or strong proba-
bilistic bisimulation. To evade the construction of the whole
Markov chain in the first place, decomposition allows for
piecewise application of lumping on the sub-Markov chains
(i.e. the Markov chains of the decomposed subsystems). Com-
bining decomposition with lumping allows for construction of
strongly probabilistic bisimilar sub-Markov chains. The sug-
gested combination of lumping and decomposition supports
the quantitative analysis of fault-tolerance mechanisms, as has
been demonstrated on a self-stabilizing system. Future work
will investigate the classes of semi-hierarchical and heterar-
chical fault propagation on the one hand, and the cooperative
effect of spatial and temporal redundancy on the other hand.

ACKNOWLEDGMENT

This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative
Research Center Automatic Verification and Analysis of Com-
plex Systems (SFB/TR 14 AVACS), and by the European
Commission under the MoVeS project, FP7-ICT-2009-257005.

REFERENCES

[1] Nils Miillner and Oliver Theel. The Degree of Masking Fault Tolerance
vs. Temporal Redundancy. Proc. of WAINA’11, pages 21-28, 2011.

[2] John George Kemeny and James Laurie Snell. Finite Markov chains.
University series in undergraduate mathematics. VanNostrand, New
York, repr edition, 1969.

[3] Vassilios Mertsiotakis. Approximate Analysis Methods for Stochastic
Process Algebras. PhD thesis, Universitit Erlangen-Niirnberg, 1998.

[4] L. Capra, C. Dutheillet, G. Franceschinis, and J. M. Ilié. On the Use of
Partial Symmetries for Lumping Markov Chains. SIGMETRICS Perform.
Eval. Rev., 28:33-35, March 2001.

[5] Salem Derisavi. Signature-based Symbolic Algorithm for Optimal
Markov Chain Lumping. In QEST’07, pages 141-150, 2007.

[6] Salem Derisavi. A Symbolic Algorithm for Optimal Markov Chain
Lumping. In TACAS’07, pages 139-154, 2007.

[7] Salem Derisavi, Peter Kemper, and William H. Sanders. Lumping Matrix
Diagram Representations of Markov Models. In DSN’05, 2005.

[8] Salem Derisavi, Holger Hermanns, and William H. Sanders. Optimal
State-space Lumping in Markov Chains. Inf. Process. Lett., 87:309-315,
September 2003.

[9]1 Sandeep Kulkarni. Component Based Design of Fault-Tolerance. PhD

thesis, The Ohio State University, Columbus Ohio, USA, 1999.

Sandeep Kulkarni and Anish Arora. Compositional Design of Multi-

tolerant Repetitive Byzantine Agreement. Lecture Notes in Computer

Science, 1346:169-181, 1997.

Anish Arora and Sandeep Kulkarni. Designing Masking Fault-Tolerance

via Nonmasking Fault-Tolerance. IEEE Transactions on Software

Engineering, 24(6):435-450, 1998.

Sandeep Kulkarni and Anish Arora. Automating the Addition of Fault-

Tolerance. In Formal Techniques in Real-Time and Fault-Tolerant

Systems (FTRTFTS’2000), 2000.

Nils Miillner and Oliver Theel. The Degree of Masking Fault Tol-

erance vs. Temporal Redundancy -Erratum. In http://www.informatik.

uni-oldenburg.de/~phoenix/docs/erratum.pdf [1], pages 21-28.

[10]

(11]

[12]

[13]

