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Abstract

We propose a method to obtain trustable Lyapunov-
based certificates of stability for hybrid systems. A hybrid
system is a system exhibiting discrete-time as well as
continuous-time behaviors, e.g. embedded systems within a
physical environment. Stability is a property which ensures
that a system starting in any possible state will reach a de-
sired state and remain there. Such systems are particularly
useful when a certain autonomous operation is required,
e.g. keeping a certain temperature or speed of a chemical
reaction or steering a vehicle over a predefined track.
Stable hybrid systems are extremely valuable because if an
error disturbes their normal operation, they automatically
“steer back” to normal operation. Stability can be certified
by finding a so-called Lyapunov function. The search for
this kind of functions usually involves solving systems of
constraints. The state-of-the-art in Lyapunov-based stability
verification is to use numerical methods to solve systems
of inequalities, which if solvable indicate stability. We
propose to use Satisfiability-Modulo-Theory (SMT) methods
to (a) validate the results of a numerical solver and (b) use
counterexamples to guide the numercial solver towards a
valid solution.
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1. Introduction

In this paper we present experiments on combining
Satisfiability-Modulo-Theory (SMT) methods with – the
current state-of-the-art – numerical solvers, for the search
of Lyapunov functions. A Lyapunov function can be used to
certify that a given hybrid system is indeed (asymptotically)
stable. It can be seen as a “generalized metric” whose value
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indicates for a given system state the “distance” to the
desired system state; the so-called equilibrium point. The
equilibrium point is w.l.o.g. assumed to be the origin, i.e. 0,
of the state space. Lyapunov functions have a special shape
that guarantees that while the system evolves the “distance”
of the system state to the equilibrium point decreases. Thus,
any system for which a Lyapunov function can be found,
eventually reaches the equilibrium point. For some systems,
it is even possible to give a bound on the rate in which the
system approaches the origin. In that case, one can compute
an upper bound on the time required to reach a certain region
around the equilibrium point. This is especially useful if one
is interested in region stability [1].

The search for Lyapunov functions involves generating
and solving sets of conditioned constraints, where each
constraints has the form ∀x ∈ P : 0 � f(ρ, x). Here,
“0 � f(ρ, x)” is a linear constraint on polynomials in-
volving some free parameters ρ, where “�” is the positive
semi-definiteness operator, and P is the region in which the
constraint has to be satisfied. This is called Semidefinite
Programming (SDP) [2].

Conditioned constraints cannot directly be given to an
SDP solver (such as CSDP [3] or SDPA [4]) because such
a solver expects unconditioned constraints. So, instead, one
uses the so-called S-Procedure which constructs uncondi-
tioned constraints. These unconditioned constraints can then
be handed over to an SDP solver.

The typically used SDP solver uses some kind of interior
point methods and thus numerically approximates the solu-
tion. In practice, it is a problem that such a numerical solvers
sometimes suffers from numerical inaccuracies. Therefore,
the constraints may be strengthened by adding additional
“gaps” to the inequalities. This makes them more robust
against these numerical issues. However, such gaps can
introduce contradictions. In [5], a heuristic is proposed,
which counter-acts this problem. The heuristic analyzes the
conditioned constraints before the unconditioned constraints
are generated, and it removes implicit equalities by substi-
tuting free parameters in the other constraints.

While such a strengthening indeed helps to obtain
solutions, one still needs to validate the result. In our
tool, STABHYLI [6], we already use the computation of
eigenvalues and principle minors to further ratify the validity



of a solution. However, the computation of eigenvalues is
usually done via numerical algorithms which again may
suffer from numerical issues.

Therefore we propose the use of SMT solvers to validate
candidate solutions. An SMT solver combines SAT solvers
with theory solver to check the satisfiability (SAT) of first-
order logic (FOL) formulae wrt. first-order theories. One
instance of such a theory is nonlinear real arithmetic (NRA).
A formula is satisfiable if there exists a model – a valuation
for each free variable – such that using the model, the
formula evaluates to true. In general FOL is semidecidable,
i.e., there exists a procedure such that, given a model and
a formula, the procedure eventually decides whether the
model satisfies the formula. Due to Tarski [7], we know that
NRA on the other hand is decidable with double exponential
complexity.

Related Work

SMT solving has received quite some attention over the
last years but, unfortunately, most available implementations
are either restricted to linear arithmetic or do not support
quantifiers. There is only a handful of SMT solvers which
support NRA with quantifiers: Z3 [8], CVC3 [9], and
CVC4 [10]. As stated above, SMT is already combining
SAT solving with different theory solvers. Nevertheless,
other combinations built on top of SMT solvers have been
made. One combines a linear SMT solver with interval con-
straint propagation to solve nonlinear real arithmetic prob-
lems [11]. Another one combines convex programming with
SMT solving to solve non-linear convex constraints [12].
Our approach and the mentioned methods have in common
that we want to find a model for a formula. Gao et al [11]
also use the result of a linear SMT solver to validate the
answer of the interval constraints propagation method which
is very similar to what we do, but they consider only
quantifier-free formulas. In the search for a solution of the
constraint systems, however, we have a single quantifier
alternation that is an outer existential and an inner universal
quantifier. Thus we cannot apply their method due to the
lack of the quantifiers.

In contrast to safety properties, stability has not yet
received that much attention wrt. automatic proving and
therefor only a few tools are available. The tools known
to the authors are the following:

• A tool by Podelski and Wagner which computes a
sequence of snapshots and then tries to related the
snapshots in decreasing sequence. If successful this
certifies region stability, i.e., stability with respect to
a region instead of a single equilibrium point [1].

• A tool by Oehlerking et al. implementing a powerful
state space partitioning scheme to find Lyapunov func-
tions for linear hybrid systems [13].

• RSOLVER [14] which computes Lyapunov-like func-
tions for continuous system.

• A tool by Duggirala and Mitra that combines Lyapunov
functions with searching for a well-foundedness rela-
tion for symmetric linear hybrid systems [15].

Finally various MATLAB toolboxes (YALMIP [16], SOS-
TOOLS [17]) that require a by-hand generation of constraint
systems for the search of Lyapunov functions are available.
These toolboxes do not automatic prove stability but assist
in handling solvers. One such toolbox around SDP solvers
is VSDP [18]. It can compute rigorous error bounds by
correct handling of the rounding in floating point arithmetic
and thereby validating the candidate solution. Nevertheless,
it might happen that the error bounds are such that on
one hand deciding whether the candidate solution is valid
might be impossible. This means that the candidate needs
to be rejected. On the other hand the error bounds are again
computed numerically. This means it might happen that the
bounds are too coarse such that former case results only
from the fact of inexactness.

In conclusion, all Lyapunov-based tools use numeri-
cal/approximation methods. This means that the obtained
candidate solution needs to be validated to ensure correct-
ness.

The contributions of this paper are the following: 1) We
present a method to validate stability certificates obtained
by numerical approximation algorithms, 2) We sketch a very
preliminary idea to guide a numerical solver away from bad
candidate solutions.

The remainder of the paper is organized as follows:
Section 2 gives the theoretical background and Section 3
describes how candidate solutions can be validated. In
Section 4, we sketch the idea to “guide the numerical solver
away from invalid solutions”. Section 5 gives a simple
example which leads to numerical issues in the search for
Lyapunov function. These can be detected and fixed due the
proposed method. A conclusion is given in Section 6.

2. Preliminaries

In this section, we define the hybrid system model,
stability and the techniques required to certify stability of a
hybrid system.

Definition 1: A Hybrid Automaton is a quintuple

H = (V ,M, T ,Flow , Inv) where

• V is a finite set of variables and S = R
|V| is the

corresponding continuous state space,
• M is a finite set of modes,
• T is a finite set of transitions (m1,G,U ,m2) where
◦ m1,m2 ∈ M are the source and target mode of the

transition, respectively,
◦ G ⊆ S is a guard which restricts the valuations of

the variables for which this transition can be taken,
◦ U : S → S is the reset function which might update

some valuations of the variables,



• Flow : M → [S → P(S)] is the flow function which
assigns a flow to every mode. A flow f ⊆ S → P(S) in
turn assigns a closed subset of S to each x ∈ S, which
can be seen as the right hand side of a differential
inclusion ẋ ∈ f(x),

• Inv : M → S is the invariant function which assigns
a closed subset of the continuous state space to each
mode m ∈ M, and therefore restricts valuations of the
variables for which this mode can be active.

A trajectory of H is an infinite solution in form of a function
x(t) over time. Each solution has an associated (possibly
infinite) sequence of modes visited by the trajectory. ⋄

Intuitively, stability is a property expressing that all
trajectories of the system eventually reach an equilibrium
point of the sub-state space and stay in that point forever,
given the absence of errors. For technical reasons, the
equilibrium point is usually assumed to be the origin of the
continuous state space, i.e. 0. This is not a restriction, since
a system can always be shifted such that the equilibrium is
in 0 via a coordinate transformation.

In the following, we refer to x↓V′ ∈ R|V
′| as the

sub-vector of a vector x ∈ R
V containing only values of

variables in V ′ ⊆ V .

Definition 2: Global Asymptotic Stability with Re-
spect to a Subset of Variables [19].
Let H = (V ,M, T ,Flow , Inv) be a hybrid automaton,
and let V ′ ⊆ V be the set of variables that are required
to converge to the equilibrium point 0. A continuous-time
dynamic system H is called globally stable (GS) with
respect to V ′ if for all functions x↓V′(t),

∀ǫ>0 : ∃δ>0 : ∀t ≥ 0 :

||x(0)||<δ ⇒ ||x↓V′(t)||<ǫ.

H is called globally attractive (GA) with respect to V ′ if
for all functions x↓V′(t),

lim
t→∞

x↓V′(t) = 0, i.e.,

∀ǫ>0 : ∃t0≥0 : ∀t>t0 : ||x↓V′(t)||<ǫ,

where 0 is the origin of R|V
′|. If a system is both, globally

stable with respect to V ′ and globally attractive with respect
to V ′, then it is called globally asymptotically stable (GAS)
with respect to V ′. ⋄

Intuitively, GS is a boundedness condition, i.e. each
trajectory starting δ-close to the origin will remain ǫ-close
to the origin. GA ensures progress, i.e. for each ǫ-distance
to the origin, there exists a point in time t0 such that a
trajectory always remains within this distance. By induction,
it follows that every trajectory eventually approaches the
origin. For a given hybrid system, this can be proven using
Lyapunov Theory [20], which was originally restricted to
continuous systems but has been lifted to hybrid systems.

We are handling polynomial hybrid systems. Thus, we
assume that all guards, invariants, and flows are defined as
expressions over polynomials. A monomial has the form

∏

v∈V vev,j where all ev,j ∈ N. A weighted sum of such

monomials is called a polynomial g : R|V| → R and has the
form g(x) =

∑

j cj
∏

v∈V vej,k where all cj ∈ R. Such
a polynomial is called a parameterized polynomial if it
has the form f(ρ, x) =

∑

j cjρj
∏

v∈V vev,j where ρj is

a free parameter and ρj
∏

v∈V vev,j is called a parameter-
ized monomial. Indeed, the parameter in a parameterized
monomial is rather optional, but to increase readability and
to shorten the formulas, we assume every summand in a
parameterized polynomial to have a parameter – a “dummy”
parameter might be used to represent a constant 1.

Theorem 1: Discontinuous Lyapunov Functions for a
Subset of Variables [19].
Let H = (V ,M, T ,Flow , Inv) be a hybrid automaton and
let V ′ ⊆ V be the set of variables that are required to
converge. If for each m ∈ M, there exists a set of variables
Vm with V ′ ⊆ Vm ⊆ V and a continuously differentiable
function Vm : S → R such that

1) for each m ∈ M, there exist two class K∞ functions
α and β such that

∀x ∈ Inv (m) : α(||x↓Vm
||) � Vm(x)

∧ Vm(x) � β(||x↓Vm
||),

2) for each m ∈ M, there exists a class K∞ function γ
such that

∀x ∈ Inv (m) : V̇m(x) � −γ(||x↓Vm
||)

for each

V̇m(x) ∈
{〈

dVm(x)
dx

∣

∣

∣f
〉

| f ∈ Flow (m)
}

,

3) for each (m1,G,U ,m2) ∈ T ,

∀x ∈ G : Vm2
(U(x)) � Vm1

(x),

then H is globally asymptotically stable with respect to V ′

and Vm is called a Local Lyapunov Function (LLF) of mode
m.

In Theorem 1, “
〈

dV(x)
dx

∣

∣

∣f
〉

” denotes the inner product

between the gradient of a Lyapunov function V and a
flow function f . Furthermore, each constraint has the form
0 � c(x) where “�” is a positive semi-definiteness operator
which requires that c(x) is non-negative almost everywhere
and c(0) = 0.

Definition 3: A Constraint is called

• unconditioned iff it exhibits the form 0 � f(x)
• conditioned iff it exhibits the form ∀x ∈ P : 0 � f(x)

where f(x) is a parameterized polynomial, P ⊂ S is a
subset of the continuous state space, and ∀x ∈ S is called
the condition.1 ⋄

Using the S-Procedure [2], a conditioned constraint can
be transformed into an unconditioned constraint. The S-
Procedure restricts a constraint to some region by exploiting

1. We assume the conditions to be expressed as a conjunction of
equalities and inequalities over polynomials, i.e.

∧
i
g(x)△0 where g(x)

is a polynomial and △ is a relation with △ ∈ {=,≥, >}.
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Figure 1: Overview on the Validating Solver Engine

the fact that finding a solution for
(

∑

i

ai · gi(x)

)

+

(

∑

i

bi · hi(x)

)

� g(x)

with ai≥0 implies
(

∧

i

0 � gi(x)

)

∧

(

∧

i

0 = hi(x)

)

⇒ 0 � g(x).

Note that the parameters bi of the equality conditions 0 =
hi(x) are not required to be non-negative.

To find a set of Lyapunov functions for a hybrid system,
one also needs to supply the solver with templates, which
are parameterized polynomials. Such a polynomial usually
contains all monomials up to a particular degree that are
constructible from a given set of variables. The following
steps are performed using the templates: 1. Generate the
constraint system described by Theorem 1, then 2. use the
S-Procedure to cast the conditioned constraints into uncon-
ditioned ones, and then 3. try to solve them.2 Upon success,
we have a certificate of stability. Note that one cannot
conclude non-stability from failing to solve the constraints
since the described method is sound but incomplete: a higher
degree template could still render the problem solvable.

3. Validating Solver Engine

In this section we describe the validating solver en-
gine. This engine can be used to obtain validated stability
certificates. Figure 1 gives an overview of the validating
solver engine: 1. From the Lyapunov function templates and
the hybrid system model, a linear polynomial optimization

2. Further steps are required, like translating the polynomial constraints
into linear matrix inequalities (LMIs) which, in turn, can be solved using
solvers for positive semi-definite problems. This type of translation can be
done by using the Sums-of-Squares decomposition [21].

problem (PoP) is constructed. 2. An equality handler and
a constraint hardener post-process the PoP. 3. The PoP
is relaxed (via the S-Procedure and the Sums-of-Squares-
decomposition) into a linear matrix inequality (LMI). 4. An
SDP solver is used to obtain a LMI candidate solution.
5. The LMI candidate solution is validated (e.g., compute
eigenvalues3 and some principal minors). 6. If the LMI
candidate solution passes this validation, then 7. it is taken
as a candidate solution to the PoP. 8. This PoP candidate
solution is then further validated by an SMT solver. If it is
successfully validated, then it serves as a stability certificate.

The SDP solver and the numerical validator usually ap-
proximate a solution, i.e., they start with an initial valuation
of the free parameters. Then they optimize the valuation in
the direction which minimizes a given objective function as
well as the error.4 If (a) a certain accuracy is obtained, (b) a
maximum number of steps is reached, or (c) the progress
becomes too small, then the algorithm stops. Clearly, we
can always increase the maximum number of steps and the
desired accuracy but the closer the current valuation gets
to an optimal solution the smaller the progress becomes.
Therefore it is not always possible to reach the optimal
solution.

The above described method can be automatized and
the resulting LMIs can be solved using numerical solvers.
Recall, that – unfortunately – this type of solvers do
only approximate solutions and additionally suffer from
numerical issues. Prior to applying the S-Procedure and the
Sums-of-Squares decomposition, the constraint system has
the following form:

∃ρ ∈ R
m such that

∧

i

∀x





∧

j

0 ≤ g(j,i)(x)



⇒ 0 � fi(ρ, x)

where ρ = [ρ1 . . . ρm]
T

are the free parameters
(stemming from the templates), x ∈ R

n are the system
variables (stemming from the hybrid system), g(j,i)(x) :
R

n 7→ R are parameter-free polynomials describing a
certain region, and fi(ρ, x) : R

m×R
n 7→ R are polynomials

involving free parameters. Note that the goal is to find a
valuation for ρ and all fi(ρ, x) are linear in ρ.

Example 1 shows a very simple version of such a
constraint system.

Example 1:

∃ρ ∈ R : ∀x ∈ R : true ⇒ 0 � ρ · x2

For this example a numerical solver might return the
candidate solution ρNUM = −1·10−k, where k is sufficiently
large. On one hand, this is in most cases sufficient and

3. Note that computing eigenvalues has issues on its own since it is
wellknown to be numerical ill-conditioned [22]

4. Roughly speaking the error determines the quality of the solution: the
closer to 0, the better (in the sense of feasibility) the solution is.



allows to conclude feasibility of the above problem. On the
other hand, reusing this candidate solution might render any
successive calculation invalid. However, STABHYLI com-
poses Lyapunov functions as conic combinations of other
Lyapunov functions. This means that in order to guarantee
validity of the composed Lyapunov function, we need to
assure validity of the combined Lyapunov functions.

Validating Candidate Solutions

We tried to directly solve constraint systems obtained
from applying the Lyapunov Theorem, using the SMT
solvers Z3 [8], CVC3 [9], and CVC4 [10]. Unfortunately,
none of the solvers is able to solve relevant instances – the
solvers always returned unknown. However, we were able
to use SMT solvers to successfully (in-)validate candidate
solutions. This use of SMT solvers for validating solutions
is beneficial since it can be done with exact arithmetic,
i.e., using rationals with full precision. This allows us to
conclude that a candidate solution is actually valid and
further computation that reuse the candidate solution are
also trustworthy.

Remark: If we want solve the constraint systems
directly using an SMT solver then we can only use those
solvers that support the logic NRA (non-linear real arith-
metic) since the constraints involve polynomials. In contrast
if we want to validate candidate solutions then we can use
solvers that support QF_NRA (quantifier-free non-linear real
arithmetic). Even though both logics are decidable in theory,
the first one is computationally intractable in general.

To validate a candidate solution, we substitute the free
parameters ρ in the constraint system by the candidate
solution ρNUM. For Example 1, we obtain:

∀x ∈ R : true ⇒ 0 � −1 · 10−k · x2. (1)

To validate the candidate solution we simply iterate
through all constraints and ask whether the negation is
satisfiable. For Equation 1, we obtain:

∃x ∈ R : true ∧ −1 · 10−k · x2 < 0. (2)

Then, an SMT solver reports one of the following:

case unknown We can not assure validity of the candidate
solution – this might happen due to insufficient mem-
ory or computation time.

case unsat We know that the candidate solution is valid.
case sat We have to reject the invalid candidate solution.

For Equation 2, an SMT solver might return sat with
the model xSMT = 1 and, indeed, xSMT serves as a
counterexample showing that ρNUM is an invalid solution.

Remark: In our experiments none of the solvers ever
returned unknown while validating candidate solutions.
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Figure 2: Overview of the Guiding Solver Engine

4. Guiding Solver Engine

In the previous section, we have shown how to use
SMT solvers to validate solutions. Due to the nature of the
numerical solvers (i.e., that they approximate solutions) we
can expect many solutions returned by a numerical solver
to be invalidated by the SMT solver. It even gets worse
because of the way, the constraint systems are presented to
the numerical solver. By default, the goal is to minimize
−α, β, and −γ (see Theorem 1). In most cases this leads
to a situation where the optimal feasible solution lies on
the border of the solution space. That means that the
optimization direction increases the attractiveness of invalid
candidate solutions attractive.

To overcome this issue, we would like to gain knowledge
from a counterexample. We propose to compute the error
or residual at the point xSMT and to extend the constraint
system with an additional constraint.

Figure 2 gives an overview of the guiding (and vali-
dating) solver engine. It extends the proposed engine from
Figure 1 by the constraint deduction with possibly exploiting
a generated counterexample from the SMT-based validator.
The idea is as follows: If the SMT solver returns sat and
a model xSMT, we construct an additional constraint that
rules out the candidate solution ρNUM. The engine might
also check for consistency and then be restarted using the
extended constraint system. We call “adding of additional
constraints” guiding, since it might not force the numerical
solver to return valid solutions. Instead it may push the
solver away from bad solutions.

Figure 3 sketches the idea. The inner circle represents
the solution space while the gray outer ring represents the
invalid candidate solutions that might be returned by the



(a) Solution space with a first
counterexample (b) Final solution space

Figure 3: Sketch of the solution space of a constraint system.

solver due to numerical issues and approximation inaccu-
racies. On the left side an “X” marks a possible candidate
solution which is then successfully identified as invalid. The
dashed line represents a constraint that is then added to rule
out the invalid candidate solution – and hopefully other
invalid candidate solutions as well. The right side figure
represents a final result in which the original solution space
is narrowed down to the most inner gray polygon due to
four more constraints, that were added. Any solution that
might be returned by the numerical solver that is within
the gray polygon is valid. Even more, if again due to
numerical issues, the solution lies “a bit outside” of the
inner gray polygon but within the white circle, then this is
not a problem since such a candidate would still satisfy the
original constraint system.

Remark: Note, that the goal is to find solutions to the
original constraint system. This fact allows us to exclude the
added constraint from validation as they do not need to be
satisfied since their sole purpose is to guide the numerical
solver.

In the following, we explain how the additional con-
straints are constructed.

Guiding

By evaluating the all violated constraints 0 ≤ fi(ρ, x)
using the counterexample xSMT and the candidate solution
ρNUM, we obtain

resi = fi(ρNUM, xSMT),

where resi < 0. Now, we can extend the constraint system
from Example 1 by a constraint

|resi| ≤ fi(ρ, xSMT),

which is linear in ρ and does not contain quantifiers. In our
running example, this leads to the constraint |res| ≤ ρ·x2

SMT
.

The extended constraint system is as follows

Example 2:

∃ρ such that ∀x : true ⇒ 0 � ρ · x2

∧ |res| ≤ ρ · x2
SMT

This extended constraint system can be handed back to
the numerical solver, asking for a new ρ′

NUM
. This will be

again validated using the SMT solver. If we obtain a new
counterexample x′

SMT
, then we extend the problem again

until either

• a valid solution is found,
• a maximum number of iterations has been reached, or
• the set of constraints with which we extended the

original problem, contains a contradiction.

The last alternative might happen if the real solution
space is empty or has a very small interior. Note that
the additional constraints are all pure linear, unconditioned,
and quantifier free. Thus linear programming (or again an
SMT solver) might be used to further check contradiction-
freeness, i.e., satisfiability of the additional constraints.

Such contradictions can be introduced because the con-
straints that we add are more restrictive than the original
constraints. The rationale behind was the expectation that
the numerical solver will achieve the same residual on the
added constraint as on the original constraint. In this way the
numerical solver will not return a solution to the extended
constraint system. But – fortunately – that candidate satisfies
the original constraint system. Thus we would have obtained
a validatable solution.

Accelerated Guiding

We can accelerate this method further by alternatively
extending the constraint system as follows:

Example 3:

∃ρ such that

∀x : true ⇒ 0 � ρ · x2

∧ ρ · x2
SMT ≥ |res| · acc,

where 0 < acc is an acceleration factor. Using 1 < acc

can lead to a validatable solution more quickly, but the
drawback is that at the same time this narrows down the
solution space faster. In the worst case, it might happen
that the solution space becomes empty due to contradictions
before a validatable solution is found. On the other hand, if
0 < acc < 1 is chosen, then the solution space is not
narrowed down that fast. The drawback is that it might
happen that there is nearly no increase in the quality of
candidate solution returned by the numerical solver.

5. Example

Consider a sub-model of the hybrid system given in
Figure 4 consisting of the two modes Mode1 and Mode2,
only.

fi(x) = −ci · x



Mode1

ẋ = −c1x

1 ≤ x2 ≤ 100

Mode2

ẋ = −c2x

1 ≤ x2 ≤ 100

Mode3

ẋ = −x

0 ≤ x ≤ 1

x = 1 x = 1

Figure 4: Bad Scaled Hybrid System

where inv = 1 ≤ x2 ∧ x2 ≤ 100 is the invariant of
both modes and arbitrary switching is allowed. Choosing
the coefficients ci to be badly scaled, e.g. c1 = 10−10 and
c2 = 1010 together with using V3 · x

2 + V2 · x + V1 as the
template for both modes leads to the constraint system:

∃α, β, γ :

inv ⇒ α · x2 � V3 · x
2 + V2 · x+ V1

∧ inv ⇒ V3 · x
2 + V2 · x+ V1 � β · x2

∧ inv ⇒ γ · x2 � 2c1V3 · x
2 + c1V2 · x

∧ inv ⇒ γ · x2 � 2c2V3 · x
2 + c2V2 · x

∧ 0 < α

∧ 0 < β

∧ 0 < γ.

One might easily see that V1 = V2 = 0, V3 = α = β = 1,
γ = 2c1 is a valid solution. Nevertheless, both SDPA and
CSDP report “Lack of Progress” and thus the quality of the
solution is unknown. Indeed, both solution have the problem
that γ is slightly too large and CSDP additionally chooses
V3 and β slightly too small.

However, the SMT-base validator finds counterexam-
ples. And after deducing two more constraints in case of
SDPA and four more constraints in case of CSDP, both
solvers – even though they still report “Lack of Progress”
– return a valid solution.

Remark: The numerical validation is not helpful in
this example since the eigenvalues are very close to 0. For
the initial constraint system, i.e., without any additional
constraints, computing the eigenvalues correctly indicates
that the candidate solutions are not valid. In case of the
final constraint system – the one obtained by guiding –
computing eigenvalues falsely indicates that the solutions
are invalid. Here using the SMT-based validator allows us
to recover the solutions and lets us conclude stability of the
hybrid system.

6. Conclusion

We have presented an approach to validate candidate
solution obtained by numerically solvers. We have applied
this approach in the process of solving constraint systems
that arise in search for Lyapunov functions. The validation

works by using SMT solvers to check satisfiability of the
negated constraints. Such a validation is needed if the
Lyapunov functions are reused, e.g. as barrier certificates
proving unreachability of certain bad states, as a basis for
composition, or as an estimator on the rate of convergence.

While this validation is already very helpful, one would
also like to be able to gain knowledge from invalid candidate
solutions. In Section 4, we have also shown a way to guide
the numerical solver away from invalid candidate solutions.
That way, it becomes more likely that “true solutions” are
found. Future work includes to further analyze this approach
and to give it a more theoretical basis. The relation to δ-
satisfiability [23] is of special interest.
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