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ABSTRACT 

 
SoC designer face two main problems nowadays. Firstly, the complexity of ASICs is expected to 
double every 18 months as Moore’s Law did not loose its correctness yet. Higher levels of 
abstraction need to be introduced to handle the billions of transistors of future designs and to 
keep, or even better shorten, time to market. At the same point the designer of these sub micron 
devices will have to observe the power dissipation of his SoC. The continuous enhancement of 
battery’s energy capacity does not keep up with the more and more power consuming 
applications. This is critical to handheld products like cellular phones and PDAs. 
RT level abstraction is the entry point in most designflows today. During synthesis a gate level 
netlist is being generated. If any, power estimations and optimizations usually are performed on 
these netlists. In the low power community it is well known that at this point most opportunities 
of higher level power optimizations are wasted. The better flow is the one with a behavioral level 
entry point and an early focus on power dissipation. 
Synopsys offers its Behavioral Compiler which introduces this higher level of abstraction. By 
entering the algorithms only, the designer does not need to do needlework on scheduling and 
binding of operations. Behavioral Compiler even offers automated gated clock insertion which 
should result in reduced power dissipation. 
As a design case, this paper introduces a bank of six fourth order IIR filters, which is implemented 
in VHDL code at RT level as well as behavioral level. The differences of the two specifications 
are explained and the dissimilar design flows are elucidated. The outcome of both flows is a gate 
level mapped design which is, then,  analyzed in terms of power dissipation. By iterating both 
flows, while applying  power optimizations to the VHDL and power constraints to the synthesis 
scripts, the synthesized gate level netlists are improved regarding power. The reader will hereby 
undergo the advantages and limits of each methodology. 
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1 Introduction 

During the early days of software engineering,  programmers had to code algorithms in hardware 
near languages like assembler. The results where fast and efficient little routines for a single 
processor. But the code was useless for any other architecture. For a new processor the engineer 
had to start all over again. This resulted in the 1960th software crisis which was overcome with the 
first compilers. For general purpose IP, it is unthinkable to code nowadays software in assembler. 
EDA industry reached a similar point where designers have more and more difficulties to handle 
the fast advancing technologies. “IP reuse” is the buzzword that comes up with most methods of 
solutions, but like software coded in assembler, today’s designs are not implemented for reuse. 
This is not only necessarily the designers fault, but also has to be blamed on the designflows that 
are used. Shifting the entry point to a higher level – from RT to behavioral – might be the 
solution. Synopsys offers the Behavioral Compiler (BC) for this. 
Like programmers had to be convinced that compilers can generate efficient machine code, 
behavioral synthesis has to prove its advantage to other methodologies. In [ 1 ] and [ 2 ] it was 
shown that BC is able to replace a RT level design entry and even improve performance. 
Therefore this paper does not handle the aspect of timing and area but focuses on the aspect of 
power dissipation in architectures generated with BC. Equally, we ignore aspects of testability to 
reduce the complexity of the design space. The question we want to answer is: “Is BC able to 
synthesize power efficient designs?” 
In the following chapter, we want to give a quick explanation of the used design. We introduce 
the algorithms and the top level architecture. In two sub chapters, 2.1 and 2.2, we lead into the 
different coding styles for BC and DC. In chapter 3 the two design flows for each entry, 
behavioral and RT, are depicted. In chapter 4 we set the basis for a accurate gate level power 
estimation. We make sure to simulate the design with appropriate input vectors in order to 
achieve the needed activity information for power estimation. Chapter 5 resembles the core of this 
paper. Each case study is explained and analyzed. The conclusions and recommendations are 
summarized in chapter 6. The paper closes with the references in chapter 7. 

2 Design Case 

The design case we have chosen is a bank of six IIR fourth order gammatone filters to explore the 
design space. It is an ideal case because it contains typical components of a SoC: controller, a 
data flow path, a ROM block and a RAM block. 
The algorithm of one IIR is shown in Figure 1. We see a data flow that contains 24 
multiplications, 12 additions and 4 subtractions. The calculation depends on the input (IIF), the 
filter constants (a, Rb, Ib) which are stored in the mentioned ROM and eight previously calculated 
values (Real1 to 4 and Imag1 to 4) that are kept in the RAM. 
We chose to divide the design into two main parts. The channel implements the data flow of 
Figure 1 while the controller is described as a separate entity. The controller reads the filter 
constants and the previously calculated values from ROM and RAM. After reading it then serves 
these to the channel and writes back the results into the RAM. The communication between these 
two entities drives a handshake protocol. Figure 2 shows the quite simple structure of the 
toplevel. 
 



SNUG Europe 2001  Comparison of a RT and Behavioral 
Level Design entry Regarding Power 

3

Figure 1: Algorithm of Channel 
 

Figure 2: Top Level Block Diagram 

2.1. RT VHDL 
Since RT level coding is the most common design methodology we handle this topic short. RAM 
and ROM are instantiated from a package that is generated by the silicon vendor’s memory 
generator. A 16 Bit two stage multiplier and addersubtractor are instantiated from Synopsys’ 
designware foundation library. Processes have the following structure: 

label : process(clk) 
begin 
  if clk’event and clk = ‘1’ then 
    if reset = ‘1’ then      --Do reset 
    else       --Normal operation 
    end if; 
  end if; 
end process; 

The RT level specification excluding testbench consists of 1280 lines of code. 
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2.2. Behavioral VHDL 
No instantiations where used for behavioral VHDL coding. BC is capable to find the right 
allocation, binding and scheduling for the given algorithm and its operations. Multiplications and 
additions or substractions are mapped to Synopsys’ designware foundation library automatically. 
To make the RAM and ROM accessible to BC we used Synopsys’ MemWrap and applied the 
methodology described in [ 8 ]. The following code maps variables to the memory cells: 

variable VsReal1ram       : TarrayRamReal1; 
 ... 
variable VsImag4ram       : TarrayRamImag4; 
constant  RR_RAM_16_BIT   : resource := 0; 
attribute variables of RR_RAM_16_BIT  : constant is 

"VsReal1ram ... VsImag4ram"; 
attribute map_to_module of RR_RAM_16_BIT : constant is  

"RR_RAM_16_BIT_wrap"; 
The structure of the processes is different as well. They consist of two infinite loops – the reset 
and main loop. Have a look at the following example. 

p_gfb_kanal : process  
begin 

reset_loop: loop 
...     -- Reset all signals 

wait until SlClk'event and SlClk = '1'; 
if SlReset = '1' then exit reset_loop; end if; 
operational_loop : loop   -- Normal operation 

... 
                  wait until SlClk'event and SlClk = '1'; 
                  if SlReset = '1' then exit reset_loop; end if; -- End of Superstate 1 

   ... 
wait until SlClk'event and SlClk = '1'; 

                  if SlReset = '1' then exit reset_loop; end if; End of Superstate N 
end loop operational_loop; 

end loop reset_loop; 
end process p_gfb_kanal; 

It is important to know that each ‘wait until Clk’ statement followed by an ‘exit loop’ defines a so 
called super state. Super states might take more then one clock cycle to execute. More details can 
be found in  [ 7 ]. 
The behavioral level specification excluding testbench consists of 636 lines of code. 

3 Used Designflow 

We want to compare two different design methodologies. One starts with a RT level VHDL 
description of an exemplary design. The other requires a behavioral level VHDL implementation 
of the same device, which is processed by Synopsys’ Behavioral Compiler (BC). Each 
methodology requires its own design flow. They are drafted in Figure 3. 
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Figure 3: Used Designflow 
 
The left part (A) of Figure 3 shows the behavioral design entry. The input is  behavioral VHDL 
which implements two main loops (compare with 2.2). 
Several script files have been written to explore the design space. It is very easy to have BC find 
an allocation, scheduling and binding for a desired functionality. By changing a few lines in the 
script file, BC will allocate several multipliers and adders or just one. Our in-house developed tool 
ORINOCO® supports the designer to find appropriate low power constrains for BC. Chapter 5.8 
provides more details on this topic. 
BC drives the user defined RAM and ROM with the help of a wrapper generated by Synopsys’ 
tool Memory Wrapper. Reference [ 8 ] depicts how to start and use this tool. The wrapper is 
needed to define the signal sequences for read and write accesses on the memories. In this way 
BC is able to map arrays of variables on these and schedule the accesses. 
After scheduling, binding and allocation, structural RT level VHDL code is written out for a 
functional verification (not drafted in Figure 3). At the same time we save the design in a 
Synopsys’ Data Base (DB) file which serves as input for Design Compiler (DC) and Power 
Compiler (PC) respectively. 
The next step in the flow is a regular RT to gate level synthesis. We used LSI Logic’s G10TM-p 
cell-based CMOS technology. The constants are: 3.3V, 0.35 micron. 
The result is a gate level netlist of the design which is written out to VHDL and DB. PC’s 
features clock gating and operand isolation are employed to improve the energy balance. Have a 
look at [ 9 ] for a more detailed description of the latter topic. 
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Hereafter the signal activity is being traced during a ModelSim VHDL simulation. This is made 
possible by an entity named sente_monitor_mit that is instantiated in the testbench. Via the 
simulators PLI interface necessary toggle information is written into an Intermediate Activity File 
(IAF). 
The power estimation tool WattWatcher from Sequence finally analyzes the VHDL and annotates 
the activities to each cell to sum up total power usage. The cell power models are supplied by LSI  
Logic in an Advanced Library Format (ALF). 
The RTL entry design flow – right part (B) of Figure 3 – is equivalent to the back end of the first 
flow (A). 
Finally the estimated power results of each flow are compared and analyzed. 

4  How to Simulate 

As already mentioned, WattWatcher is depended on activity information to estimate power. A 
gate level VHDL simulation supplies this data. It is essential for the quality of the estimated 
power results to simulate a common case. Two questions needed to be solved: What data should 
be processed by the GFB and how much time should be simulated? 

4.1. What to Simulate 
The testbench supplies two sinuses with frequencies of  0.28936 KHz and 1.29607 KHz to the 
filters using the left and right channel of the GFB. The frequencies are properly chosen to 
generate a characteristic activity in each filter of the GFB. Figure 4 and Figure 5 show the filters’ 
responses to these sinuses. The time axis is quantified with the input sampling frequency which is 
16.276 KHz. 
The first stimulus excites the first band pass filter most since it is its mid-frequency. The second 
stimulus comes close to the mid-frequency of the second filter. 

Figure 4: Response of GFB to 0.28936 KHz sinus 

Figure 5: Response of GFB to 1.29607 KHz sinus 
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4.2. How long to simulate 
Our introduced design flow shows the need of gate level simulation. We had to find a compromise 
between the necessity to simulate a long period of real time and to keep simulation time down. 
Only when “enough”  samples of the input sinus are processed the power estimation will be 
meaningful. To get hold on the indistinct term “enough” we simulated an exemplary architecture 
similar to the one introduced in chapter 5.1 – containing ROM, RAM, five 2-stage-pipelined-
multipliers, five adders and one subtractor – with different runtimes. The results are listed in Table 
1. 
Total power combines clock and internal power1. While clock power predicts the power 
dissipation due to driving the clock tree, internal power summarizes the loss in each leaf cell of 
the design. The second half of Table 1 shows the power usage of groups of such cells that form 
the structures RAM/ROM2, multipliers and adders/subtractors. 
During the first µs the design is resetting and the RAM is being initialized. This is reflected by the 
first column of Table 1. It shows a 13.9% higher power dissipation in the memory compared to  
typical operation mode. Clock power is constant in the various simulation cases. This is not 
surprising given that clock gating is not applied in the simulated instance. 
One can see that the design’s total power consumption does not change at all when a period of 
0.01 ms or more is being simulated. When selecting the time period with a length of 1.5 ms, we 
are accepting an error of 4.4% in the adder/subtractor logic compared to the more accurate 
estimation with 3 ms of toggle information. Judging the share of these logic for total power 
(0.1%) and used processor time (~ 0.66 h instead of ~ 1.3 h on a SunUltra 440 MHz with 768 
MB of RAM) we accepted 1.5 ms simulated real time as “enough”. 
During this period the design completes a reset and toggles between operational and idle mode 25 
times or processes 25 samples respectively. 
 

Table 1: Estimated Power for Different Simulation Times 

5 Analysis 

The tables of Appendix A show the estimated power of exemplary designs. They differ in the 
number of allocated arithmetic units and applied low power methodologies like clock gating or 
operand isolation. In the following chapters 5.1 to 5.10 we give a brief description on each design. 
Then we evaluate and compare the results. We set of from a default implementation.  
 

                                                        
1 Usually pad power would be a third source but we did not insert pads in the design. 
2 Actually RAM and ROM are represented by one large vendor cell each. 

Simulated Time [ms] 0.001 0.01 1 1.5 2 2.5 3 
Total Power [mW] 123.00 110.00 110.00 110.00 110.00 110.00 110.00 
Clock Power [mW] 12.00 12.00 12.00 12.00 12.00 12.00 12.00 
Internal Power [mW] 111.00 97.8 98.30 98.40 98.50 98.50 98.50 
Mem Power [mW] 51.65 45.92 45.35 45.35 45.35 45.35 45.35 
Mult Power [mW] 20.29 16.85 17.80 17.91 17.95 17.96 17.98 
AddSub Power [mW] 0.13 0.13 0.11 0.11 0.12 0.12 0.12 
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5.1. Default 
We started from a naively implemented VHDL code for behavioral and another for RT level entry 
without considering any low power aspects. In both flows this resulted in unnecessary memory 
accesses and therefore high power dissipation. BC implements the architecture using five two-
stage-multipliers, five adders and one subtractor. DC is not able to schedule pipelined designware 
components. For this reason, we had to analyze timing requirements manually and then chose to 
instantiate one two-stage-multiplier and one addersubtractor for the RT implementation. This 
makes it understandable that the RT design uses 11.5% less power compared to the behavioral 
design (see formula 1). It has to be noted that several arithmetic units do not necessarily consume 
more power then one implementation as will be shown in 5.6 to 5.10. 

 
( 1 ) 

 
 

5.2. Optimized RAM access 
The controller has been optimized to eliminate unnecessary memory accesses. In the behavioral 
flow this has been achieved due to modifications to the memory wrapper. Owing to the 
comfortable GUI of this tool, this took just a few mouse clicks and another run of scheduling and 
compilation. For the RT level flow the VHDL code of the controller had to be modified. 
Compared to the change in the behavioral flow, this was quite a complex interference with the 
VHDL code. In this way we where able to reduce power dissipation in RAM and ROM by 96.2% 
in the behavioral and by 94.9% in the RT flow (see formula 2). 
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All following cases integrate this optimized controller. 

5.3. Extend Latency 
This architecture only exists for the behavioral flow. The controller remained unchanged as in 5.2. 
For scheduling the option extend_latency has been activated. This resulted in a channel 
implementation with one two-stage-mult, one adder and two addersubtractors. This reduced 
power compared to the default design by 24.5%. 

5.4. Set Cycles 
Even with the extend latency option set, the behavioral flow creates an unnecessarily fast design. 
We calculated that – given the sample frequency of 16.276KHz – each filter has a maximum time 
window of 960ns to complete its calculations. The loop which implements the channel might take 
up to 48 clock cycles to be executed. Therefore we introduce the command set_cycles 48 –
from_begin ... –to_end before scheduling the channel. The newly scheduled architecture contains 
one two-stage-multiplier and one addersubtractor. It is directly comparable to the default design 
of the RT level flow which implements the same number of arithmetic units. It can be seen that 
the power dissipation of the resulting designs differs only by 6.7%, leaning towards the favor of 
the behavioral methodology. 
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5.5. Binary 
In both flows the state encoding style was changed from one-hot to binary. This was achieved by 
setting the variable bc_fsm_coding_style = “binary” in the behavioral flow. In the RT level flow 
the VHDL code was modified. It might have been possible to use the design compilers ability to 
extract a state machine from the design but since this is a gate level technique it is applicable to 
both flows. There is no need for a comparison. 
This reduced the width of the state-vectors from 30 to 70 bits to below 10 bits. Gray encoding 
was preferred but BC does not support this encoding style, which we think is a feature that should 
be implemented. Power consumption was reduced by 6.1% (behavioral) and 6.3% (RT) 
respectively as a result of shrinking the bit width of the state registers. 

5.6. Mult 
For both design flows we replaced the pipelined multiplier dw02_mult_2_stage(str3) with a 
dw02_mult(nbw4). In 5.8 we determine this step. It is amazing that the multiplier consumes about 
69,5% less power than the pipelined version. It would be interesting to see if  the implementation 
dw02_mult_2_stage(csa5) is a better choice. Unfortunately, this could not be examined in this 
paper. In the following experiments we continued to use the dw02_mult(nbw). 

5.7. Clock Gating 
We applied power compiler’s ability of gated clock insertion to the two flows. In the behavioral 
flow the synthesis scripts had to be enhanced with the following: 

set_clock_gating_style -sequential latch -min 4 
set_fix_hold SlClk 
set_input_delay 0 -clock SlClk { Signal1,...,SignalN } 
set_clock_transition 0 SlClk 
schedule -gate_clock 
propagate_constraints -gate_clock 
compile 

The RT flow used the following: 
set_clock_gating_style -sequential latch -min 4 
set_fix_hold SlClk 
set_input_delay 0 -clock SlClk { Signal1,...,SignalN } 
propagate_constraints -gate_clock 
set_clock_skew SlClk –propagate 
compile 

Please refer to [ 9 ] for the denotation of each command. Clock gating reduced power 
consumption by 31.3% (behavioral) respectively 21.5% (RT). Unexpectedly, the behavioral 
design is marginally smaller than the one without the extra clock gating logic from 5.6. A possible 
remedy might be different default variable settings and algorithms within the synthesis flow due to 
the use of PC. 

5.8. Operand Isolation 
We applied power compiler’s ability of operand isolation to the flows. Employing the same 
methodology for RT flows is possible but it came out that using instantiations for Designware 
                                                        
3 Pipelined Wallace tree multiplier synthesis model 
4 None-Booth-recoded Wallace tree synthesis model 
5 Carry-save array synthesis model 
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components is fatal. As described in [ 9 ] PC offers two methods for operand isolation integration. 
The pragma isolation method, that has been used for the behavioral flow, was not appropriate for 
the RT flow since the VHDL code did not contain binary operations to which the pragma could 
be assigned. The RT VHDL Code needed to be rewritten with operand inferencing. 
Unfortunately, the pipelined designware multipliers can only be inferenced by BC. This required 
another recoding and the usage of none pipelined multipliers (compare with 5.6). 
Operand isolation disconnects the inputs of an arithmetic unit by the use of either AND or OR 
gates. The AND gate technique switches the input vectors to all zeros when an arithmetic unit is 
unused while the OR gate methodology switches them to all ones. 
Table 4 shows that this methodology is not applicable for the design case. Enabling and disabling 
operand isolation induces extra activity and extra power dissipation. In other scenarios the benefit 
of operand isolation might outweigh this handicap. 

5.9. ORINOCO 
In 5.1 we mentioned that using as few arithmetic units as possible is not necessarily the most 
power efficient design methodology. The references [ 3 ] to [ 5 ] elucidate the theories behind this 
statement. Currently we work on the implementation of a behavioral level power estimation tool 
named ORINOCO®  [ 6 ], which supports the designer in finding the right scheduling, binding and 
allocation. ORINOCO®’s suggestion for our exemplary design is shown in Figure 6. 

Figure 6: ORINOCO® 
To achieve minimum power in the multipliers, ORINOCO® suggests to use three instances with a 
certain binding of  operations to these. The binding is essential for this optimization since a poor 
one will  eliminate the advantage. This can be seen in Figure 6. The three-multiplier-bar with an 
optimal binding (light gray) indicates a low power design while implementing the worst binding 
(black) would just result in a waste of area for the extra hardware. 
We used the following scheduling command three times to have BC implement the design as 
proposed by our tool: 

set_common_resource { \ 
p_gfb_kanal/reset_loop/operational_loop/mult_piped_95/mul_24 \ 

  ... 
p_gfb_kanal/reset_loop/operational_loop/mult_piped_167/mul_24 \ 

} -min_count 1 -max_count 1 
It takes high effort to integrate the effect of this command into the RT level flow. This is the 
reason why we didn’t try to generate an equivalent design from the RT level entry. 
The result of the power optimization can be seen in Table 5. The three multipliers actually do 
need less power then the one of the design Mult (0,741 mW compared to 0,855mW). This is an 
improvement by 13.3%. The theory therefore does show a practical relevance. Unfortunately, 
total power is slightly higher (1.3%). The explanation is quite simple: The effect of control logic 
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like multiplexers and finite state machines on power dissipation is the subject of current research 
and has to be implemented in ORINOCO® yet. The control logic of the new design consumes 
more power then the one from the design Mult. The favorable balance of the multipliers is inferior 
to the negative effect of the control logic. 

5.10. Worst 
We tried the worst possible binding suggested by ORINOCO® as well and again the result 
matches the theory. Table 5 shows that the same three multipliers consume now 0.934 mW. This 
corresponds to a degradation of 26.0% compared to the best binding. But again total power does 
not reflect this result. Amazingly this design consumes marginally less power then the one with 
only one mult. To draw a conclusion: Examining the arithmetic units only is not enough. 

6  Conclusions and Recommendations 

In 1 we put the question: “Is BC able to synthesize power efficient designs?” We can answer this 
with a conservative “yes”. We do so because BC does not offer any special power constraints or 
optimizations at behavioral level. The applied techniques like e.g. clock gating and operand 
isolation are not exclusively for BC. They are offered by Synopsys’ tool power compiler which 
can be integrated in the RT level flow, too. This is the reason why both flows offer good power 
reduction possibilities and produce nearly similar results. It might seem that BC does generate 
slightly less power consuming designs but with some manual enhancement to the RT level VHDL 
code, the results may be the same. 
There are three reasons why we still prefer the behavioral level flow: 
1. it might not enhance power efficiency but it doesn’t harm  either. 
2. the development of new tools like ORINOCO® for high level power optimization – once they 

are no longer prototypes or research studies – promise an advantage of BC over DC in the 
future. 

3. it is much simpler to introduce power optimizations at the behavioral level. 
The RT level VHDL code had to be modified several times during the design space exploration, 
which took some time to do and added the permanent risk of inserting bugs.  The behavioral 
VHDL code stayed unchanged except for two synthesis pragmas. Since pragmas are just 
comments this does not alter the specification of the design at all. Every other optimization was 
applied by modifying the scheduling and synthesis scripts.  
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8 Appendix A 

Architecture Default Optimized RAM Extend 
Latency 

Set Cycles Binary 

Area [mm²] 4.60 4.62 2.79 2.71 2.62 
Internal Power [mW] 98.40 53.00 40.10 38.50 36.30 
Clock Power [mW] 12.00 12.00 8.97 8.67 8.02 
Total Power [mW] 110.00 65.00 49.10 47.20 44.30 
sum of Mults [mW] 17.9100 17.9100 4.7800 2.8000 3.3200 
sum of Add&Sub [mW] 0.1457 0.1457 0.1787 0.1120 0.1320 
RAM [mW] 45.3000 1.6700 1.6600 1.6500 1.6500 
ROM [mW] 0.0530 0.0530 0.0527 0.0523 0.0523 
2_stage_Mult 1 [mW] 4.1000 4.1000 4.7800 2.8000 3.3200 
2_stage_Mult 2 [mW] 3.4800 3.4800    
2_stage_Mult 3 [mW] 3.5600 3.5600    
2_stage_Mult 4 [mW] 2.0600 2.0600    
2_stage_Mult 5 [mW] 4.7100 4.7100    
Add 1 [mW] 0.0147 0.0147 0.0523   
Add 2 [mW] 0.0173 0.0173    
Add 3 [mW] 0.0123 0.0123    
Add 4 [mW] 0.0313 0.0313    
Add 5 [mW] 0.0311 0.0311    
Sub 1 [mW] 0.0130 0.0130    
AddSub 1 [mW] 0.0130 0.0130 0.0411 0.1120 0.1320 
AddSub 2 [mW] 0.0130 0.0130 0.0853   

Table 2: Designs Behavioral Entry 
 
Architecture Default Optimized RAM Binary 
Area [mm²] 2.80 2.02 1.92 
Internal Power [mW] 88.30 41.50 38.90 
Clock Power [mW] 9.03 9.05 8.57 
Total Power [mW] 97.40 50.60 47.40 
RAM [mW] 45.3000 2.3100 2.3100 
ROM [mW] 0.0167 0.0167 0.0167 
2_stage_Mult [mW] 3.8800 3.8800 3.0500 
AddSub [mW] 0.0810 0.0810 0.0810 

Table 3: Designs RT Level Entry 
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 Bahavioral Flow: lowRAM_ ... RT Level Flow: lowRAM_... 
Architecture Mult Clock 

Gating 
Isolation 

(or) 
Isolation 

(and) 
Mult Clock 

Gating 
Isolation 

(or) 
Isolation 

(and) 
Area [mm²] 1.86 1.81 1.87 1.88 1.85 1.86 1.81 1.81 
Internal Power [mW] 36.70 26.80 37.00 36.60 37.10 30.40 36.60 36.20 
Clock Power [mW] 8.31 5.78 8.31 8.31 8.08 6.52 7.88 7.88 
Total Power [mW] 45.00 32.50 45.30 45.00 45.2 36.90 44.50 44.10 
RAM [mW] 1.6600 1.6600 1.6600 1.6600 2.3100 2.3100 2.3100 2.3100 
ROM [mW] 0.0527 0.0527 0.0527 0.0527 0.0167 0.0167 0.0167 0.0167 
Mult [mW] 0.9170 0.9520 1.2500 0.9200 1.1300 0.84000 1.6400 1.2500 
AddSub [mW] 0.1580 0.1650 0.1540 0.1540 0.1100 0.0806 0.1280 0.1280 

Table 4: Clock Gating and Operand Isolation 
 
Architecture ORINOCO Worst 
Area [mm²] 2.52 2.51 
Internal Power [mW] 39.10 38.00 
Clock Power [mW] 8.86 8.58 
Total Power [mW] 47.90 46.50 
RAM [mW] 1.6500 1.6600 
ROM [mW] 0.0523 0.0527 
Mult 1 [mW] 0.2680 0.3780 
Mult 2 [mW] 0.2580 0.3830 
Mult 3 [mW] 0.2150 0.1730 
all Mult [mW] 0.7410 0.9340 
Add 1 [mW] 0.0396 0.0429 
Sub 1 [mW] 0.0117  
AddSub 1 [mW] 0.0824 0.0754 
all Add [mW] 0.1337 0.1183 

Table 5: Applying ORINOCO® Suggestions 


