

Evaluation of a Behavioral Level Low Power Design Flow
Based on a Design Case

Frank Poppen, Wolfgang Nebel

OFFIS Research Institute

Frank.Poppen@Offis.de

ABSTRACT

SoC designers face two main problems nowadays. First, the complexity of ASICs is doubling
every 18 months, following Moore’s Law, while the productivity of designers evolves at a
much slower pace. This leads to a problem known as “the design gap”. Second, designers of
sub-micron devices have to observe the power dissipation of their SoC. The enhancement of
battery energy capacity fails to keep up with increasingly power consuming applications.
This is critical to handheld products like cellular telephones and PDAs, which will drive the
market in a future world of wireless communication.
Higher levels of abstraction need to be introduced to approach the design gap and in order to
handle the billions of transistors of future designs. Synopsys offers its Behavioral Compiler
(BC), which introduces this higher level of abstraction. Designers do not need to schedule
manually and do binding of operations if they enter the algorithms only.
Integrating BC into a design flow together with Synopsys’ PowerCompiler offers the
opportunity of a high-level low-power design-flow with automated gated clock insertion and
operand isolation. This results in a promising methodology reducing development time and
power dissipation.
This paper introduces a behavioral level low power design flow and evaluates its applicability
based on a design case. The design space is being explored and several architectures for the
chosen filter algorithms are synthesized starting from a behavioral HDL specification of a
bank of infinite impulse response filters (IIR). Each solution is examined at gate level for
power dissipation.

 2

1 Introduction
During the early days of software engineering, programmers had to code algorithms in
hardware-near languages, like assembler. The results were fast and efficient routines for
designated processors. The big disadvantage of this code was its uselessness for any other
architecture. For every new processor, the engineer had to start all over again. This resulted in
the 1960's software crisis, which was overcome with the invention of the first compilers.
Today, it is unthinkable to code huge software projects in assembler.
The EDA industry has reached a similar point. While IC designers’ productivity is growing
by a rate of 21% per year, the submicron silicon technology capability increases by 58%.
Designers have growing difficulties to handle the fast advancing technologies. This
phenomenon is known as “the design gap”. “IP reuse” is the buzzword that comes up most of
the time as a solution. Reality shows that today’s designs are still not implemented for reuse,
just like software coded in assembler. This is not necessarily the designers fault. Part of the
problem is based on the design flows that are used. Shifting the entry point to a higher
abstraction level – from register transfer (RT) to behavioral – might be the solution. Synopsys
offers the Behavioral Compiler (BC) in order to achieve this.
Behavioral synthesis has to prove its advantage over other methodologies. In [1] and [2] it
has been shown that BC can replace a RT level design entry and generate improved designs,
with respect to timing and area. In [3] we stated that a behavioral flow has no negative effect
on power consumption. The results of both flows are the same. The advantage of BC is a
simplified design space exploration. This fact can improve power consumption, if the
designer gets a better overview on his possible implementations. In this paper, we would like
to explore the entire design space. The design case is a more complex version of the
Gammatone Filterbank (GFB) introduced in [3].
In the following chapter, we give a quick explanation of the design used. We introduce the
algorithms, the top-level architecture and the differences to the design case of
[3]. We also give a quick introduction into the behavioral coding style (Chapter 3). In
Chapter 4 we depict the behavioral design flow employing Synopsys’ BC, DC and Power
Compiler, Mentor’s ModelSim and OFFIS’ ORINOCO®. Chapter 5 resembles the core of
this paper. Several case studies are explained and analyzed. The conclusions and
recommendations are summarized in Chapter 6. Appendix A shows the tables of estimated
power values. The paper closes with the references in Appendix B.

2 Design Case
The design case is a bank of 60 IIR fourth order Gammatone filters [12]. It is an ideal case
because it contains typical components of a SoC: controller, data flow path, ROM and RAM.
The algorithm of one IIR is shown in Figure 1. It is the same we use in [3]. The variation is
the number of filters – 60 instead of 6. The data flow contains 24 multiplications, 12
additions and 4 subtractions. The calculation depends on the input (IIF), the filter constants
(a, Rb, Ib) which are stored in ROM (1.4 kBits) and eight previously calculated values (Real1
to 4 and Imag1 to 4) that are kept in RAM (7.5 kBits). These calculations are executed 60
times at a frequency of 16.276 kHz, which results in approximately 39 MIPS.
The design consists of two main parts. Each part is specified in an operational loop (compare
with chapter 3). The channel_loop implements the data flow of Figure 1, while the
controller_loop specifies ROM and RAM accesses. The controller reads the filter constants
and the previously calculated values from ROM and RAM. After reading, the values are fed
to the channel. Results are written back into the RAM. Figure 2 shows the simple structure of
the design.

 3

Figure 1: Algorithm of Channel

Figure 2: Top Level Block Diagram

3 Behavioral VHDL
BC requires a special HDL coding style for behavioral VHDL or Verilog. We chose
behavioral VHDL since it is a more powerful language at the behavioral level. The strength
of Verilog can be seen at the lower levels of abstraction – RTL and gate level.
The advantage of BC over DC is component inferencing. There exist several cases where DC
requires component instantiation – e.g. for memory usage. The handling of signals like
memory enable, output enable, write enable etc. are not transparent for the designer. He has
to implement the correct signal assignments for read or write accesses next to the designs
functionality. A tool called MemoryWrapper encapsulates memory signal assignments for
BC. The methodology is described in [9]. BC infers memory for declared arrays of
variables. Have a look at the following code:

R e a l 1 a l t R e a l 4 a l t I m a g 1 a l t I m a g 4 a l t

R e a l 1 a l t R e a l 4 a l t I m a g 1 a l t I m a g 4 a l t R e a l 1 R e a l 4 I m a g 1 I m a g 4

a

R b

Ib

R e a l 1 n e w R e a l 4 n e w I m a g 1 n e w I m a g 4 n e w

C h a n n e l C o n tro l le r

R O M

R A M

+

∗

+ ∗

∗

+

∗

+ ∗

∗

+

∗

+ ∗

∗

+

∗

+ ∗

∗

IIF

a Rb

Ib Real1 Real2 Real3 Real4

Imag1 Imag2 Imag3 Imag4

Rb Rb Rb

Real1new Real3new Real2new Real4new

a a a

Ib Ib Ib Ib

+

∗

+ ∗

∗

+

∗

+ ∗

∗

+

∗

+ ∗

∗

+

∗

+ ∗

∗

0.0

a Rb

Ib Imag1 Imag2 Imag3 Imag4

Real1 Real2 Real3 Real4

Rb Rb Rb

Imag1new Imag3new Imag2new Imag4new

a a a

Ib Ib Ib Ib

 4

variable VsReal1ram : TarrayRamReal1;
 ...
variable VsImag4ram : TarrayRamImag4;
constant RR_RAM_16_BIT : resource := 0;
attribute variables of RR_RAM_16_BIT : constant is "VsReal1ram ... VsImag4ram";
attribute map_to_module of RR_RAM_16_BIT : constant is "RR_RAM_16_BIT_wrap";

Further reads or writes are reduced to:

signal_read_value_from_ram <= VsReal1ram(integer_address);
VsReal1ram(integer_address) := signal_write_value_to_ram;

Another disadvantage of DC is the use of n-stage multipliers in Synopsys’ DesignWare
library (DW). DC can only instantiate these components. Inferencing is not an option. BC is
able to use these components through component inferencing. This makes the handling
transparent and easy.
BC is capable in finding an allocation, binding and scheduling for the given algorithm and its
operations. Multiplications and additions or subtractions are mapped to Synopsys’
DesignWare foundation library automatically. The structure of a process differs compared to
RTL code. It consists of at least two infinite loops – the reset and the main loop:

p_gfb : process
begin

reset_loop: loop
... -- Reset all signals and variables

wait until SlClk'event and SlClk = '1';
if SlReset = '1' then exit reset_loop; end if;

operational_loop : loop -- Normal operation
...

 wait until SlClk'event and SlClk = '1';
 if SlReset = '1' then exit reset_loop; end if; -- End of Superstate 1

 ...
wait until SlClk'event and SlClk = '1';

 if SlReset = '1' then exit reset_loop; end if; -- End of Superstate N
end loop operational_loop;

end loop reset_loop;
end process p_gfb;

Each ‘wait until Clk’ statement followed by an ‘exit loop’ defines a so-called super state.
Super states may take more than one clock-cycle to execute. More details can be found in
[8]. The behavioral level specification excluding testbench consists of 462 lines of code.

4 Low Power Behavioral Design Flow
In this chapter, we explain the design flow we used for architecture generation, synthesis,
power estimation and power optimization. Our methodology is visualized in Figure 3. The
input is behavioral VHDL. Three loops are implemented: reset_loop, controller_loop and
channel_loop (compare with Chapter 3). We created several constraints files to explore the
design space. BC generates an appropriate allocation, scheduling and binding within these
constraints. We are able to engender different architectures this way without changing the
initial VHDL specification.

 5

Figure 3: Used Design Flow

Our in-house developed tool, ORINOCO® [7], offers behavioral level power estimation and
supports SoC-designers to create behavioral synthesis constraints for low power design. We
ignored the first feature in the scope of this work and concentrated on the behavioral low
power synthesis. We experienced that the power dissipation of an algorithm depends on the
architecture and the processed input data [4 – 6]. The values shown in Figure 4 are estimates
of the power dissipation in architectures with different allocations – one to thirteen
resources. Keep in mind that all thirteen architectures evaluate the same algorithm. The
binding of operations is a design decision with more than one resource. The figure shows that
the binding has great effect on power dissipation. If a binding destroys correlation in the data
path, it raises the switching activity. The power dissipation is high (black bar). A well-chosen
binding will enhance data correlation and reduce power dissipation (gray bar). An interesting
fact is visible in Figure 4.

Figure 4: ORINOCO®

Behavioral
Compiler

Design/Power
Compiler

Wrapper
RAM
ROM

Memory
Wrapper

Behavioral
Constraints

RTL
DB

Constraints

Structural
RTL

VHDL

Behavioral
VHDL

Gate
Level
Verilog

SDF
Gate
Level
DB

ModelSim
Simulation

DPFLI

Synopsys
report_power Power

RAM
ROM

Synopsys
Monitor

ORINOCO ®

SAIF
(toggle
info)

 6

One resource might consume more power than three instances of the same component. When
allocation and binding are well chosen, the most power efficient design is not necessarily the
one using the least resources. ORINOCO® generates behavioral constraints files to apply the
estimated best binding and allocation to BC. This file includes the BC command
set_common_resource. For each resource, this constraint is set. A list contains the operations
to be bound to each resource.

set_common_resource { \
p_gfb/reset_loop/controller_loop/channel_loop/mult_95/ \

 ...
p_gfb/reset_loop/controller_loopchannel_loop/mult_167/ \

} –max_count 1

BC schedules user defined RAM and ROM with the help of a wrapper. Synopsys’ tool
MemoryWrapper encapsulates vendor memories. This offers a simple interface to include
memory IP in the flow. Reference [9] depicts how to start and use this tool. The wrapper is
needed to define the signal sequences for read and write accesses on the memories. In this
way, BC is able to map arrays of variables on these and schedule the accesses.
After scheduling, binding and allocation, structural RT level VHDL code is written out for
functional verification (not drafted in Figure 3). A Synopsys’ database (DB) serves as input
for Design Compiler (DC) and Power Compiler respectively. The next step is a regular RT to
gate level synthesis. We used LSI Logic’s G10TM-p cell-based CMOS technology. The
constants are: 3.3V, 0.35 micron, 25°C.
The result is a gate level netlist of the design, which is written out to Verilog and DB. In [3]
we used VHDL for gate level simulations. We changed to Verilog for two reasons. Firstly,
ModelSim simulates our Verilog netlists observable faster than VHDL. Secondly,
backannotation of SDF and SAIF works smoother with Verilog.
Power Compiler offers the features “recompile for power optimization”, clock gating and
operand isolation. We employ the first methodology to improve the energy balance. Have a
look at
[10] for a more detailed description. However, in the scope of this paper we do not handle
clock gating and operand isolation. We included these methodologies in [3].
Hereafter, the signal activity is being traced during a ModelSim VHDL/Verilog co-
simulation. We use a VHDL testbench to stimulate the Verilog netlist. The testbench is the
same we use to stimulate the behavioral VHDL specification. We do not need different
testbenches for each abstraction level. A monitoring entity is linked to the simulator via the
foreign interface. This monitor traces signal activities and writes them out in a Switching
Activity Interchange Format (SAIF).
With the command read_saif the activity information is back annotated to Synopsys’ Power
Compiler. This enables Power Compiler to estimate dynamic power and to optimize the
design. The command report_power gives an overview on the power dissipation. The netlist
can be improved in reverence to power with another compile-run. Power Compiler requires a
power-characterized library for this function.

5 Analysis
Many parameters influence the power dissipation of a design. In this chapter, we introduce
several cases where some of these parameters are varied while others are fixed.
The first fixed parameter is “choice of algorithm”. Several algorithms to implement digital
filters are known, e.g. finite impulse response filters (FIR) or infinite impulse response filters
(IIR). Some of them are more power efficient then others. It is possible to use high level

 7

power estimation tools like ORINOCO to find power efficient algorithms very early in the
design flow. This is a very promising methodology, since the best power optimizations are
achieved at the higher abstraction levels (compare with Figure 5).

Figure 5: Power Reduction Opportunities [11]

However, including several algorithms, would go beyond the scope of this paper. This work
examines only one algorithm to implement the GFB (compare with Chapter 2).
The second fixed parameter is “choice of target technology”. We chose to use LSI Logic’s
G10TM-p cell-based CMOS technology. The constants are mentioned in Chapter 4.
We varied the parameters “simulation stimuli and period”, “architecture” and “power
optimization methodologies”. All power estimates exclude the power consumption of RAM
and ROM. These values are invariant to the test cases and are therefore of no significance to
this paper. We begin to analyze the effect of different stimuli and simulation periods on
power estimates.

5.1. Effects of Stimuli and Period
In Chapter 4 we introduce the behavioral low power design flow. We see, that a gate level
simulation is necessary to obtain the switching activity for power estimation. Formula (1) is
an approximation of the switching power Pdynamic of static CMOS designs.

(1)

Cout is the output capacity and Vdd the supply voltage. These constants are defined by the
vendor’s technology library. K is the average number of rising transitions during one clock
cycle and f is the clock frequency. We generate SAIF files during gate level simulation to
determine these values.
The 60 filters of the GFB – each has a different mid-frequency – react differently depending
on the stimuli. Table1, 3 and 5 show the estimated average power dissipation, for the input
stimuli “sinus wave”, “white noise” and “human speech sample”. The power dissipation in
RAM and ROM is invariant to all the test cases in this paper. Thus, we tabulated the power
consumption in “mW” without the memories’ share. The left column names the architecture.
GFB is implemented using the multiplier dw02_mult(nbm1). The architectures pipeN_GFB
use the components dw02_mult_N_stage(str2), which are pipelined DesignWare multipliers,
instead. The right columns reveal the used resources. Each row of power values is the result
of a simulation with different simulation periods – from 3.5 to 14 ms.

1 None-Booth-Recoded Wallace Tree Synthesis Model
2 Pipelined Wallace Tree Multiplier Synthesis Model

fVKCP ddoutdynamic
2=

System level

Behavioral level

Register-transfer level

Logic level

Transistor level

Layout level

Power reduction opportunities

10 - 20X

2 - 5X

20 - 50%

OFFIS

Commercial
Tools

 8

We see, that the estimated power dissipation for a sinus stimulus rises with the simulation
period. The reason for this effect is the transient response of digital filters. The filters need
some time to lock into phase. Before that time, the activity is low. For the second experiment
with white noise as input (Table 3) the values are nearly independent from the simulation
period. White noise covers the entire spectrum of frequency. This stimulates all 60 filters
instantaneously and at all times. In Table 5, we observe a contrary trend. The figures become
smaller. Our human speech sample has higher amplitudes at the beginning. This induces
more activity to the corresponding filters. Then the input quiets down. The activity in the
filters is reduced and the average power dissipation becomes smaller.
Tables 2, 4 and 6 show the absolute relative error standardized to the values of the estimates
with the longest simulation period, which is 14 ms. The sinus stimulus requires a longer
simulation time for meaningful average power estimates. The discrepancy is higher than 3 %.
The other two stimuli are not as dependent as this signal to a longer simulation period. Even
with a short period of 3.5 ms, the error is below 1 %. The following power estimations will
use this short simulation period and the human speech stimulus. This is legitimized due to the
small divergence and the fact that a speech stimulus is closest to the GFB’s application
domain.

5.2. Effects of Architectures
In this chapter, we examine a greater variety of architectures. In [3] we presumed that
DesignWare’s N-stage multipliers are not a good choice for low power designs. Table 7 and
its visualization in Figure 6 confirm this thesis. Listed are the power estimates for
architectures that infer multipliers from a regular dw02_mult(nbm) to a
dw02_mult_6_stage(str) – a multiplier with six pipeline-stages. We also varied the number of
inferred components per architecture. We started the series with one allocated multiplier and
raised the resource usage to three.

Figure 6: Power Estimation on Architectures

thr
ee

 m
ult

tw
o m

ult

on
e m

ult

1-stage-mult

2-stage-mult

3-stage-mult
4-stage-mult

5-stage-mult
6-stage-mult

0

10

20

30

40

50

60

70

80

90

[mW]

 9

Our behavioral script only constrained the number of multipliers. The usage of adders and
subtractors is unconstrained. This has some interesting effects on BC’s scheduling strategy.
BC infers three adders, one adder-subtractor and one subtractor for a design with three non-
pipelined multipliers. Only one adder and one adder-subtractor are used for the one multiplier
design. The usage of several multipliers requires extra control logic to route the dataflow.
These extra multiplexors extend the length of the critical path such that BC requires
additional adders and subtractors. The usage of pipelined multipliers slackens the critical
path. These designs require only one adder and one adder-subtractor. Still, the power
dissipation is higher compared to the design with the regular multiplier and the extra adders
and subtractors. The effect of adders and subtractors on power is minor compared to the
dissipation of the multipliers.

5.3. Power Optimization Technologies
In this chapter we use three approaches to optimize power consumption: Synopsys’
PowerCompiler, OFFIS’ ORINOCO® and variation of number representation. Clock gating
and operand isolation are further promising low power techniques. Inside the frame of this
work we chose not to evaluate these methodologies. We discussed these topics in [3].
ORINOCO® is a high level power estimation and optimization tool. It finds a power efficient
allocation and binding so that the activity on resources like multipliers and adders is reduced.
This proceeding is illustrated in Figure 7.

Figure 7: Power Efficient Binding

Shown is an allocation of two adders, r1 and r2. The operations op1 to op4 need to be
scheduled and bound to the two resources. The “bad binding” example induces high activity
to the adder because of the large Hamming distance in between the input values. The second
binding causes less activity at the adders’ inputs. Power dissipation is reduced without having
a penalty on timing and area constraints. [4 – 6] handle the topic in detail.
Table 8 shows the power values of architectures with optimized binding. The “power”
column contains the power estimates of these architectures after schedule and compile. The
“optimized power” column gives the power estimates of the same architecture after it has
been recompiled with annotated SAIF and the constraint set_max_dynamic_power 0.0 nW.
We see that more resources can be used to lower power dissipation. An architecture with four
multipliers, seven adders and one subtractor uses 12.54% less power then the same
architecture with only two multipliers. That the binding is crucial can be seen if we compare
the “good binding” section with the “bad binding”. The constraints set by ORINOCO®
enhance power efficiency by up to 17%. To stay fair, we also have to point out that the tool
failed on the architecture with two multipliers. The “good binding” delivers a 8% worse
power dissipation. There are two possible explanations for this behavior. The more resources
are allocated the more binding variations exist. Two multipliers might tighten the design

o p 1 = 0 1 1 1 + 0 1 1 1 ;
o p 2 = 0 0 0 0 + 0 0 0 0 ;
o p 3 = 0 1 1 0 + 0 1 1 1 ;
o p 4 = 0 0 0 0 + 0 0 0 1 ;

„ g o o d “ b i n d i n g
r 1 = { o p 1 , o p 3 }
r 2 = { o p 2 , o p 4 }

„ b a d “ b i n d i n g
r 1 = { o p 1 , o p 2 }
r 2 = { o p 3 , o p 4 }

+ r 1 + r 2

0 1 1 1
0 0 0 0

0 1 1 1
0 0 0 1

0 1 1 1
0 0 0 0

0 1 1 0
0 0 0 0

+ r 1 + r 2

0 1 1 1
0 1 1 0

0 0 0 0
0 0 0 1

0 1 1 1
0 1 1 1

0 0 0 0
0 0 0 0

 10

space too much. The other explanation weighs more. ORINOCO® currently does not rate
control logic’s power dissipation. Complex structures of control logic can outweigh power
savings achieved by a good binding. This aspect of ORINOCO® is under development at this
point.
Synopsys’ PowerCompiler enhances power efficiency by approximately 30%. This is well
within the expected range of 20 to 50% (Figure 5). PowerCompiler adds additional cells to
the design to reduce power. Please refer to [10] for more information on this topic. The
cellcount is nearly tripled. This sounds dramatic but area does increase only by approximately
12%.
For the next test we changed the number representation from two’s complement to signed
magnitude. The filters of the GFB swing around a neutral axis. Especially for small signals
this induces a lot of activity into the design when two’s complement is used. We clarify this
in Figure 8.

Figure 8: Two’s Complement versus Signed Magnitude

The first three lines of Table 9 contain architectures known from Table 7. The column
“optimized power” lists the by Power Compiler optimized designs. Power Compiler is able to
reduce power dissipation by approximately 30% as seen before.
The mid three lines stand for a signed magnitude implementation. Since Synopsys’
DesignWare does not offer arithmetic units for this number representation we had to
implement our own library called DWSL. The power estimation results are disappointing on
first sight. Compared to the two’s complement implementation, power was reduced by 2%
only. Optimization with PC then brings the surprise. If we compare the values from the
“power” column with those of the “optimized power” column of Table 9, we see that the
power dissipation is reduced by up to 41%. We did not spend much effort to implement our
DWSL components. It seems they are too inefficiently implemented to transpose the benefit
of signed magnitude directly.
In the last three lines of Table 9 it is shown that a “good binding” improves the power
balance by another 6%, so that the most power efficient design consumes 25 mW.

6 Conclusions and Recommendations
In this paper we evaluated a behavioral level low power design flow and its applicability
based on a design case. In chapter 5.1 we showed that simulation period and simulation
stimuli have to be well chosen for the estimation of accurate power values. For our example a
period of 3.5 ms and a speech input stream proved to be the best choice between estimation
accuracy and simulation performance.
In chapter 5.2 we confirmed our statement from [3]. Synopsys’ pipelined DesignWare
multipliers are not the first choice when it comes to low power design. The architectures with
these components consume 20% to 30% more power then those with a single staged
multiplier.

D e c i m a l
- 1
1

- 1
1

T w o s C o m p le m e n t
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1

S i g n e d M a g n i t u d e
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

A
m

pl
itu

de

T i m e

 11

We tried to get the most out of low power techniques in chapter 5.3. We learned that the
architectures allocating the least resources do not necessarily consume the least power. We
experienced Synopsys’ PowerCompiler and OFFIS’ ORINOCO® to be an efficient team for
low power design. In this context we have to accentuate that the “best binding” low power
methodology does not necessarily have any penalty on area. The GFB has weak constraints
on timing and latency so that one multiplier resource is sufficient. The “best binding”
methodology therefore requires additional hardware. If e.g. another design case requires
several resources, the “best binding” can be applied without any extra cost on area.
We see in the wide range – 25mW to 83mW – of power dissipation estimates for our GFB
algorithm that awareness of power is important. These values include a factor of 3.3 which
punctuates Figure 5. We expect that operand isolation and clock gating will reduce power
dissipation below 25mW – widening the range even further.
By moving up one abstraction level, from RTL to behavioral, we also improved the IC
designers’ productivity. The behavioral specification, be it VHDL or SystemC, implements
the algorithm only. Construction of architectures is being automated and is no longer business
of the designer.

Appendix A Results

 power [mW] resources area
 simulated time 3.5 ms 7.0 ms 10.5 ms 14.0 ms adder addsub multiplier cellcount [mm²]

 GFB 42.334 43.355 43.702 43.836 5 1 4 1651 3.52
 pipe2_GFB 59.416 60.731 61.158 61.300 4 1 4 1594 3.68
 pipe3_GFB 56.765 58.111 58.540 58.690 4 1 3 1581 3.30
 pipe4_GFB 57.660 58.844 59.210 59.360 3 2 2 1399 2.95
 pipe5_GFB 59.745 61.058 61.466 61.640 3 2 2 1697 3.05 ar

ch
ite

ct
u

re

 pipe6_GFB 65.997 67.142 67.510 67.669 4 1 2 1585 3.07
Table 1: Power Estimates for Sinus Stimulus

 absolute relative error [%] resources area
 simulated time 3.5 ms 7.0 ms 10.5 ms 14.0 ms adder addsub multiplier cellcount [mm²]

 GFB 3.43 1.10 0.31 - 5 1 4 1651 3.52
 pipe2_GFB 3.07 0.93 0.23 - 4 1 4 1594 3.68
 pipe3_GFB 3.28 0.99 0.26 - 4 1 3 1581 3.30
 pipe4_GFB 2.86 0.87 0.25 - 3 2 2 1399 2.95
 pipe5_GFB 3.07 0.94 0.28 - 3 2 2 1697 3.05 ar

ch
ite

ct
u

re

 pipe6_GFB 2.47 0.78 0.23 - 4 1 2 1585 3.07
Table 2: Absolute Relative Error for Sinus Stimulus

 power [mW] resources Area
 simulated time 3.5 ms 7.0 ms 10.5 ms 14.0 ms adder addsub multiplier cellcount [mm²]

 GFB 44.134 44.201 44.392 44.430 5 1 4 1651 3.52
 pipe2_GFB 62.014 62.147 62.357 62.411 4 1 4 1594 3.68
 pipe3_GFB 59.202 59.281 59.538 59.597 4 1 3 1581 3.30
 pipe4_GFB 59.906 59.944 60.132 60.179 3 2 2 1399 2.95
 pipe5_GFB 62.436 62.339 62.545 62.595 3 2 2 1697 3.05 ar

ch
ite

ct
u

re

 pipe6_GFB 68.348 68.339 68.489 68.531 4 1 2 1585 3.07
Table 3: Power Estimates for White Noise Stimulus

 12

 absolute relative error [%] resources area
 simulated time 3.5 ms 7.0 ms 10.5 ms 14.0 ms adder addsub multiplier cellcount [mm²]

 GFB 0.67 0.52 0.09 - 5 1 4 1651 3.52
 pipe2_GFB 0.64 0.42 0.09 - 4 1 4 1594 3.68
 pipe3_GFB 0.66 0.53 0.10 - 4 1 3 1581 3.30
 pipe4_GFB 0.45 0.39 0.08 - 3 2 2 1399 2.95
 pipe5_GFB 0.25 0.41 0.08 - 3 2 2 1697 3.05 ar

ch
ite

ct
u

re

 pipe6_GFB 0.27 0.28 0.06 - 4 1 2 1585 3.07
Table 4: Absolute Relative Error for White Noise Stimulus

 power [mW] resources area
 simulated time 3.5 ms 7.0 ms 10.5 ms 14.0 ms adder addsub multiplier cellcount [mm²]

 GFB 44.130 44.110 44.047 44.014 5 1 4 1651 3.52
 pipe2_GFB 61.983 61.874 61.737 61.654 4 1 4 1594 3.68
 pipe3_GFB 59.311 59.183 59.057 58.977 4 1 3 1581 3.30
 pipe4_GFB 59.906 59.753 59.622 59.562 3 2 2 1399 2.95
 pipe5_GFB 62.493 62.229 62.044 61.951 3 2 2 1697 3.05 ar

ch
it

ec
tu

re

 pipe6_GFB 68.354 68.227 68.087 68.026 4 1 2 1585 3.07
Table 5: Power Estimates for Speak Sample Stimulus

 absolute relative error [%] resources area
 simulated time 3.5 ms 7.0 ms 10.5 ms 14.0 ms adder addsub multiplier cellcount [mm²]

 GFB 0.26 0.22 0.07 - 5 1 4 1651 3.52
 pipe2_GFB 0.53 0.36 0.13 - 4 1 4 1594 3.68
 pipe3_GFB 0.57 0.35 0.14 - 4 1 3 1581 3.30
 pipe4_GFB 0.58 0.32 0.10 - 3 2 2 1399 2.95
 pipe5_GFB 0.87 0.45 0.15 - 3 2 2 1697 3.05 ar

ch
ite

ct
u

re

 pipe6_GFB 0.48 0.30 0.09 - 4 1 2 1585 3.07
Table 6: Absolute Relative Error for Speech Stimulus

 resources area
 power [mW] mult add addsub sub cellcount [mm²]

 1-stage-mult 41.087 1 1 1 - 1450 2.31
 2-stage-mult 51.946 1 1 1 - 1445 2.46
 3-stage-mult 52.010 1 1 1 - 1496 2.49
 4-stage-mult 52.934 1 1 1 - 1397 2.46
 5-stage-mult 54.395 1 1 1 - 1475 2.53 o

n
e

m
u

lt

 6-stage-mult 51.646 1 1 1 - 1541 2.50
 1-stage-mult 46.874 2 1 1 - 1673 2.86
 2-stage-mult 59.886 2 1 1 - 1705 2.98
 3-stage-mult 59.716 2 2 1 - 1714 3.03
 4-stage-mult 63.941 2 1 1 - 1555 2.96
 5-stage-mult 65.528 2 1 1 - 1493 2.93 tw

o
 m

u
lts

 6-stage-mult 65.928 2 2 1 - 1627 3.00
 1-stage-mult 53.267 3 3 1 1 1825 3.36
 2-stage-mult 61.527 3 1 1 - 1779 3.39
 3-stage-mult 66.068 3 1 1 - 1705 3.41
 4-stage-mult 69.889 3 1 1 - 1735 3.46
 5-stage-mult 75.003 3 1 1 - 1645 3.43 th

re
e

m
u

lts

 6-stage-mult 82.856 3 2 1 - 1800 3.69
Table 7: Power Estimates for Alternative Architectures

 13

 resources area optimized area
 mult add sub power [mW] cellcount [mm²] power [mW] cellcount [mm²]

1-stage-mult 2 7 1 53.769 1894 3.30 37.830 5217 3.71
1-stage-mult 3 20 4 50.437 1766 3.50 32.895 5127 3.94
1-stage-mult 3 7 1 46.603 1968 3.49 31.376 5480 3.93

go
od

 b
in

d

1-stage-mult 4 7 1 47.025 2019 3.82 30.717 5878 4.25
1-stage-mult 2 8 1 52.260 2165 3.43 34.712 5505 3.84
1-stage-mult 3 9 2 53.864 2227 3.75 35.802 5744 4.18
1-stage-mult 3 8 1 54.462 2232 3.77 38.147 5936 4.18

O
R

IN
O

C
O

®

b
ad

 b
in

d

1-stage-mult 4 8 1 52.930 2346 4.05 36.163 6188 4.49
Table 8: Power Estimates for ORINOCO® Architectures

 resources area optimized area
 mult add addsub sub power [mW] cellcount [mm²] power [mW] cellcount [mm²]
 1 1 1 - 41.087 1450 2.31 29.325 2837 2.63
 2 1 1 - 46.874 1673 2.86 34.846 3770 3.18
 tw

o
’s

3 3 1 1 53.267 1825 3.36 34.820 4992 3.82
 1 2 - - 44.858 1537 2.46 28.036 3330 2.82
 2 2 - - 45.960 1672 2.84 28.215 3723 3.17
 3 2 - - 45.377 1722 3.17 26.613 4540 3.56

2 8 - - 45.035 1887 3.07 27.412 4523 3.49
3 3 - - 43.470 1559 3.12 25.531 4683 3.57

O
R

IN
O

C
O

®

si
gn

ed

4 8 - - 42.543 1695 3.64 24.988 5810 4.10
Table 9: Two’s Complement versus Signed Magnitude

Appendix B References
[1] Roberto Ugioli, Emanuele Oreste Zagano, “How to Speed Up Finite Impulse Register

With Latest Features of Behavioral Compiler”, SNUG Europe, 2000
[2] Dr. Peter Nagel, Martin Leyh, Martin Speitel, Alexander Krebs, “Methodology for

using Behavioral Compiler for the Development of an OFDM Demodulator”, SNUG
Europe, 2000

[3] Frank Poppen, Wolfgang Nebel, “Comparison of a RT and Behavioral Level Design
Entry Regarding Power”, SNUG Europe, 2001

[4] Lars Kruse, Eike Schmidt, Gerd Jochens, Ansgar Stammermann, Wolfgang Nebel,
“Lower Bound Estimation for Low Power High-Level Synthesis”, 13th International
Symposium on System Synthesis (ISSS 2000), Madrid, Spain, pp.180-185, September
2000

[5] Lars Kruse, Eike Schmidt, Gerd Jochens, Wolfgang Nebel, “Low Power Binding
Heuristics”, PATMOS’99, pp. 41-50, Kos, Greece, 1999

[6] Lars Kruse, Eike Schmidt, Gerd Jochens, Wolfgang Nebel, “Lower and Upper
Bounds on the Switching Activity in Scheduled Data Flow Graphs”, International
Symposium on Low Power Electronics and Design (ISLPED’99), pp. 115-120, San
Diego, California, 1999

[7] “http://www.orinoco.offis.de” and “ http://www.lowpower.de” respectively
[8] “v2000.11 BehavioralCompiler Modeling Guide”, Synopsys Online Documentation

 14

[9] “v2000.11 BehavioralCompiler User Guide”, Synopsys Online Documentation
[10] “v2000.11 PowerCompiler Reference Manual”, Synopsys Online Documentation
[11] Anand Raghunathan, Niraj K. Jha, Sujit Dey, “High-Level Power Analysis and

Optimization”, Kluwer Academic Publishers, 1998
[12] R. Patterson, I. Nimmo-Smith, J. Holdsworth, P. Rice, “An Efficient Auditory

Filterbank Based on the Gammatone Function”, Appendix B of SVOS Final Report:
The auditory Filterbank, APU report 2341, 1987

